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Dynamical cluster approximation within an augmented plane wave framework:
Spectral properties of SrVO3
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We present a combination of local-density approximation (LDA) with the dynamical cluster approximation
(LDA + DCA) in the framework of the full-potential linear augmented plane wave method, and compare our
LDA + DCA results for SrVO3 to LDA with the dynamical mean-field theory (LDA + DMFT) calculations as
well as experimental observations on SrVO3. We find a qualitative agreement of the momentum resolved spectral
function with angle-resolved photoemission spectra (ARPES) and former LDA + DMFT results. As a correction
to LDA + DMFT, we observe more pronounced coherent peaks below the Fermi level, as indicated by ARPES
experiments. In addition, we resolve the spectral functions in the K0 = (0,0,0) and K1 = (π,π,π ) sectors of
DCA, where band insulating and metallic phases coexist. Our approach can be applied to correlated compounds
where not only local quantum fluctuations but also spatial fluctuations are important.
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I. INTRODUCTION

The development of reliable numerical tools for the de-
scription of the electronic structure of correlated compounds
is one of the most challenging tasks in the condensed-matter
community. As an example, transition-metal perovskites with
partially filled t2g orbitals are predicted to be conventional
metals in the framework of one-electron approaches like
density-functional theory (DFT) in the local-density approxi-
mation (LDA). Nevertheless, a few perovskite families show
a markedly different behavior; SrVO3 and CaVO3 are corre-
lated metals with significant mass enhancement and LaTiO3

displays features of a Mott insulator.1,2 In all compounds,
this anomalous behavior may be caused by correlations
resulting from Coulomb repulsion effects. Therefore progress
on methods including correlation effects beyond DFT is very
desirable.

Dynamical mean-field theory (DMFT)3–5 takes local quan-
tum fluctuations fully into account but the momentum depen-
dence of the self-energy is neglected. This method has been
developed over the last twenty years and successfully describes
the metal-to-Mott insulator transition in frustrated systems6–10

and non-Fermi-liquid behavior in multiorbital systems11–13 to
mention a few examples. On the other hand, it cannot describe
such phases as spin-density wave or d-wave superconductivity
due to its lack of spatial correlations. In order to overcome
these problems the first extension to single-site DMFT are
multisite approaches in which the short-range correlations
are exactly considered within a cluster.14–16 Implementations
of these approaches are the dynamical cluster approxima-
tion (DCA)14,16 or the cellular DMFT.15 These approaches
capture the spin-density wave formation indicated as a band
insulator17,18 as well as Mott transitions.19–24 Recently, other
implementations including long-range correlations have been
developed by considering a perturbation expansion where
nonlocal contributions are obtained from the two-particle
vertex functions.25–29

Recent progress toward a realistic description of corre-
lated systems is the combination of LDA with DMFT30

(LDA + DMFT). While this approach has proven to be

quite successful for the description of spectral properties of
transition-metal oxides2,31–38 and the newly discovered iron-
based superconductors,39–41 effects originating from spatial
fluctuations remain inconclusive. Attempts to include short-
range spatial fluctuations have been done in the context of
the spin-Peierls system TiOCl—where pairing correlations are
important—within an N th-order muffin-tin orbital (NMTO)
approach combined with DCA42 as well as NMTO combined
with a variational cluster approach (VCA).43 In this work,
we present an alternative approach where we extend a newly
developed implementation of the LDA + DMFT approach31

in the context of the full potential linearized augmented plane
wave (FLAPW)44 method by including spatial fluctuations
within DCA (LDA + DCA), and we investigate the spectral
properties of SrVO3 as a test case.

The paper is organized as follows: in Sec. II, we
describe our LDA + DCA implementation with a weak-
coupling continuous-time quantum Monte Carlo (CT-QMC)
algorithm45–47 for multiorbital systems with multiple sites. In
Sec. III, we present results for SrVO3 within LDA + DCA
with a cluster of two sites and compare them with single-site
LDA + DMFT calculations as well as experimental observa-
tions and in Sec. IV we summarize our findings.

II. THEORETICAL FRAMEWORK

A. LDA + DCA in the APW framework

In this work, we extend a recent implementation of
LDA + DMFT31 to LDA + DCA, which includes short-range
spatial correlations. We first shortly review the projection
operators within the WIEN2K code.44 The local atomiclike
Wannier orbital functions inside an appropriate energy window
W can be expanded over the Bloch basis set as

∣∣χα,σ
k,m

〉 =
∑
ν∈W

〈
ψσ

k,ν

∣∣χα,σ
m

〉∣∣ψσ
k,ν

〉
, (1)

where α indicates the correlated atom, ν is the band index, σ

is the spin index, and m is the orbital index. Here, |ψσ
k,ν〉 is the

Bloch eigenfunction in the augmented plane wave basis and
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the correlated orbital |χα,σ
m 〉 is given as |χα,σ

m 〉 = |uα,σ
l (El)Y l

m〉
within the muffin-tin sphere, where El are chosen linearization
energies, u

α,σ
l is the radial wave function, and Y l

m is the
spherical harmonic function. The orthonormalized projector
operators for the DMFT and DCA self-consistent equations
are calculated by

P α,σ
m,ν (k) =

∑
α′,m′

〈
u

α′,σ
l (El)Y

l
m′

∣∣ψσ
k,ν

〉
[O(k,σ )−1/2]α,α′

m,m′ , (2)

where O(k,σ )α,α′
m,m′ is the overlap function, which is given as

O(k,σ )α,α′
m,m′ =

∑
ν∈W

〈
χα,σ

m

∣∣ψσ
k,ν

〉〈
ψσ

k,ν

∣∣χα′,σ
m′

〉
. (3)

For the LDA + DCA self-consistency procedure, the lattice
Green’s function is given as

Gσ
ν,ν ′(K + k̃,iωn) = 1

iωn + μ − εσ

K+k̃,ν
− 
σ

ν,ν ′(K + k̃,iωn)
,

(4)

where we have defined k = K + k̃ with K being the cluster
momenta and k̃ running over each Brillouin zone (BZ)
sector. ωn is the Matsubara frequency, μ is the chemical
potential, εσ

K+k̃,ν
are the Kohn-Sham (KS) eigenvalues, and


σ
ν,ν ′(K + k̃,iωn) is the lattice self-energy, which is calculated

as an expansion of the cluster self-energy over the Bloch basis
set:


σ
ν,ν ′(K + k̃,iωn) =

∑
α,m,m′

P α,σ ∗
ν,m (K + k̃)

×�

σ,imp
m,m′ (K,iωn)P α,σ

m′,ν ′ (K + k̃). (5)

From the self-energy we need to subtract the contribution to
correlations that is already included in the LDA calculation,
commonly called double counting (DC) correction,

�

σ,imp
m,m′ (K,iωn) = 


σ,imp
m,m′ (K,iωn) − 
dc

m,m′ , (6)

where 

σ,imp
m,m′ (K,iωn) is calculated by the continuous time

quantum Monte Carlo (CT-QMC) cluster solver and the
Dyson’s equation. Calculating the DC correction is not
possible exactly, but some approximate expressions have been
introduced. Here, we use as the double counting correction



σ,dc
m,m′ = δm,m′

[
U ′

(
Nc − 1

2

)
− J

(
Nσ

c − 1

2

)]
, (7)

where U ′ = U − 2J , U is the on-site Coulomb interaction, J

is the Hund’s coupling, and Nc and Nσ
c denote the number of

total occupied states and spin-resolved occupied states in the
correlated orbitals, respectively.48 The local cluster Green’s
functions are given as

G
σ,loc
m,m′ (K,iωn) =

∑
k̃,ν,ν ′

P α,σ
m,ν (K + k̃)

×Gσ
ν,ν ′(K + k̃,iωn)P α,σ ∗′

ν ′,m′ (K + k̃), (8)

where the summation over k̃ is calculated in each Brillouin-
zone sector. The LDA + DCA self-consistency condition states
that these local cluster Green’s functions, Eq. (8), have to
be equal to the impurity Green’s functions as calculated by

CT-QMC. The DMFT update of the Weiss field is given by the
Dyson’s equation as
[
G

σ,0
m,m′ (K,iωn)

]−1 = 

σ,imp
m,m′ (K,iωn) + [

G
σ,loc
m,m′ (K,iωn)

]−1
.

(9)

B. Many-body interactions and CT-QMC algorithm

In order to describe the electronic behavior of SrVO3 one
has to consider the multiorbital Hubbard Hamiltonian where
the interaction term is given by

HI = U
∑
m

nm↑nm↓ +
∑

m<n,σ

[U ′nmσnnσ̄ + (U ′ − J )nmσnnσ

− J ′c†mσ cmσ̄ c
†
nσ̄ cnσ − J ′c†mσ c

†
mσ̄ cnσ cnσ̄ ], (10)

and m,n denote the t2g orbitals. In order to solve this model
we employ a weak-coupling CT-QMC algorithm. While the
weak-coupling CT-QMC algorithm can easily treat a multiple
number of sites in the cluster, it is difficult to deal with the
full rotationally invariant form of the interaction Hamiltonian
due to the fermionic sign problem, in contrast to the strong-
coupling CT-QMC algorithm.49,50 Therefore in what follows
we shall consider a simplified Hubbard model where the spin-
flip and pair-hopping terms in Eq. (10) are neglected (J ′ = 0).

The main idea of the weak-coupling CT-QMC method is to
divide the total action S into an unperturbed term S0 and the
interaction term I which is expanded in a Taylor series. The
partition function is rewritten as

Z =
∑

k

Z0
(−I )k

k!

∫
dτ1 · · · dτk

∫
D[c,c̄]

×〈nl1↑(τ1)nl′1↓(τ1) · · · nlk↑(τk)nl′k↓(τk)〉, (11)

where 〈nl1↑(τ1)nl′1↓(τ1) · · · nlk↑(τk)nl′k↓(τk)〉 is determined by
the noninteracting Green’s function and Wick’s theorem, k

is the perturbation order, Z0 = Tr(T e−S0 ) corresponds to the
unperturbed term, and l, l′, and τk are randomly sampled. I is
given as

I = ŪβNM(2M − 1), (12)

where β is the inverse temperature, N and M are the number
of sites and the number of orbitals in the cluster, respectively,
and Ū is one of U , U ′, or U ′ − J depending on the operators
considered in the random walk in the average 〈· · ·〉 in Eq. (11).
The impurity Green’s functions are calculated by numerically
averaging Eq. (11).

III. RESULTS

SrVO3, which is thought to be a prototypical paramagnetic
correlated metal with intermediate electron-electron interac-
tions, has served in the past as a testing ground for numer-
ous newly developed LDA + DMFT approaches.2,31–35,38 In
SrVO3, the V 3d orbitals are split by the crystal field into
triply degenerate t2g and doubly degenerate eg states. The
LDA calculations show that the degenerate t2g states of V
form bands crossing the Fermi level which are well separated
from the eg bands.
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FIG. 1. (Color online) One quadrant of the Brillouin zone of
SrVO3. (a) and (b) represent the K0 = (0,0,0) and K1 = (π,π,π )
Brillouin-zone sectors, respectively. Other quadrants follow from
symmetry.

For our calculations on SrVO3, we chose the energy window
W from −1.35 to 2.0 eV for the t2g orbitals which can
then be effectively described by the degenerate three-orbital
Hubbard model in Eq. (10). We first reproduced the results
of LDA + DMFT from Ref. 31, considering a temperature
T = 0.1 eV and the same Coulomb interaction U = 4.0 eV,
and Hund’s rule coupling J = 0.65 eV. In a next step, we
extend the LDA + DMFT solution to LDA + DCA with two
sites in the cluster N = 2. Within the DCA method, N = 2
implies that we have two BZ sectors and the self-energies in
the BZ sectors are constant.

The BZ of SrVO3 has cubic symmetry and the self-energies
in the cluster momenta K0 = (0,0,0) and K1 = (π,π,π ) are
calculated in the BZ sectors shown in Figs. 1(a) and 1(b).
In real space, the on-site and nearest-neighbor-site Green’s
functions are GR=0(iωn) = 1

2 [GK0 (iωn) + GK1 (iωn)] and
GR=1(iωn) = 1

2 [GK0 (iωn) − GK1 (iωn)], respectively. Here,
the DCA formalism with N = 2 for cubic lattice has been
clearly presented in Ref. 51. Both on-site and nearest-
neighbor-site Green’s functions are inserted into the CT-QMC
impurity solver, and the LDA + DCA self-consistency is
satisfied by Eqs. (8) and (9).

Figure 2(a) shows the density of states ρ(ω) of the vanadium
t2g orbitals obtained within the LDA + DMFT, ρ(ω) = A(ω)
and LDA + DCA, ρ(ω) = 1

2 [A(K0,ω) + A(K1,ω)]. Here, the
spectral function A(K,ω) is given as

A(K,ω) = − 1

π
ImGK(ω), (13)

and an analytical continuation of the impurity Green’s func-
tions is performed through a maximum entropy method. Our
LDA + DMFT results obtained by both the weak-coupling CT-
QMC45,46 as well as the strong-coupling CT-QMC algorithms
from the ALPS code52,53 agree with former LDA + DMFT
calculations.2,31,33–35 In Figs. 2(b) and 2(c) we present the
spectral functions for the K0 = (0,0,0) and K1 = (π,π,π )
sectors within LDA and LDA + DCA. The new features
obtained in LDA + DCA are a broad peak around 1.5 eV
and a coherent peak around 0.2 eV below EF. LDA results
[see Fig. 2(b)] as well as most former LDA + DMFT results
[see also Fig. 2 (a)] exhibit neither a broad peak nor a clear
coherent peak below EF. Recent angle-resolved photoemission
(ARPES) experiments,54 have observed, in fact, a broad peak
around 1.5 eV and a coherent peak around 0.4 eV below EF
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 0
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FIG. 2. (Color online) (a) The density of states ρ(ω) of SrVO3

calculated within the LDA + DMFT and LDA + DCA approaches,
with U = 4.0 eV, J = 0.65 eV, and T = 0.1 eV. The density of
states ρ(ω) for LDA + DCA is calculated by ρ(ω) = 1

2 [A(K0,ω) +
A(K1,ω)], with K0 = (0,0,0) and K1 = (π,π,π ) sectors. (b) and (c)
The spectral functions A(K,ω) obtained from LDA and LDA + DCA
for the K0 and K1 sectors by Eq. (8), respectively. All the density of
states and spectral functions are normalized to 1.

[Fig. 3(b) in Ref. 54]. We suggest that the better agreement of
the LDA + DCA with ARPES observations is a consequence
of the inclusion of short-range spatial correlations. Figure 2(c)
shows that the coherent and broad peaks below the Fermi level
are caused by the distinct spectral weights in the K0 = (0,0,0)
and K1 = (π,π,π ) sectors. These two sectors also show,
respectively, metallic and band insulating behavior reminiscent
of the LDA results in these sectors [Fig. 2(b) and Ref. 55].

In Figs. 3(a) and 3(b), we show the momentum resolved
spectral functions calculated from Eqs. (4) and (8). The ana-
lytical continuation of the self-energy 
(K,iωn) is performed
by the maximum entropy approach with subtraction of the
Hartree-Fock term.56 In view of the ill-posed problem of the
analytical continuation of the self-energy,57 we also compared
the DOS obtained from integration of the spectral functions
with those in Fig. 2(a) and found a reasonable agreement.
We also compare LDA + DMFT to LDA + DCA results.
One can observe some redistribution of momentum resolved
spectral weight between the LDA + DMFT and LDA + DCA
results. In Figs. 3(c) and 3(d) we plot the LDA + DMFT and
LDA + DCA spectral functions, respectively, in the region
between ky = −0.6π

a
and 0.4π

a
at kx = 0.0 and kz = 0.32π

a
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FIG. 3. (Color online) (a) and (b) Spectral functions obtained
within (a) LDA + DMFT and (b) LDA + DCA for the vanadium
t2g bands. (c) and (d) Spectral functions in the regime between
ky = −0.6 π

a
and 0.4 π

a
at kx = 0.0 and kz = 0.32 π

a
within (c)

LDA + DMFT and (d) LDA + DCA for the vanadium t2g bands.

(a is the lattice constant) in order to directly compare our
calculations to the ARPES results [Fig. 1(a) of Ref. 54]. In
agreement with ARPES experiments, both LDA + DMFT and
LDA + DCA show dispersive features around −0.7 though
they are more pronounced in the LDA + DCA calculations.
Also, the LDA + DCA calculations reproduce the small peak
observed around −0.2 eV. These results account for the
renormalization of the bands due to electronic correlations.

Finally, our estimation of the mass enhancement is
m∗/m ≈ 1.7 ± 0.3 within LDA + DMFT and 1.6 ± 0.5 within
LDA + DCA at K0 = (0,0,0). These values are obtained
from

m∗/m ≈ 1 − ∂Im
(iωn)

∂ω

∣∣∣∣
ω→0+

, (14)

where the derivative is extracted by fitting a third-order
polynomial to the lowest four Matsubara frequencies.58 Note

that our LDA + DCA estimates give a slightly smaller mass
enhancement than LDA + DMFT estimates with a larger error
bar. Both sets of results are in accordance with ARPES
estimates of m∗/m ≈ 1.8 ± 0.2.59

IV. CONCLUSIONS

In conclusion, we have presented an implementation of
the LDA + DCA method within the linear augmented plane
wave framework. We have compared our benchmark results
on SrVO3, which is modeled in terms of a three-band
Hubbard Hamiltonian, with earlier LDA + DMFT calculations
as well as experimental data. Since the LDA + DCA approach
considers both local quantum as well as short-range spatial
fluctuations, it offers a more complete description of correlated
materials compared to the LDA + DMFT approach, where
only local quantum fluctuations are taken into account.

Unlike the LDA + DMFT, the LDA + DCA approach re-
produces both coherent and broad peaks for SrVO3 below
the Fermi level, observed in angle integrated photoemission
experiments. The analysis of the spectral functions at K0 =
(0,0,0) and K1 = (π,π,π ) reveals the source of these peaks.
While the broad peak is due to the spectral function in
the K0 = (0,0,0) sector, the coherent peak has its origin in
the spectral function at the K1 = (π,π,π ) sector. We also
observe a metallic and a band insulating state at the K0 =
(0,0,0) and K1 = (π,π,π ) sectors, also present in the LDA
results.

In summary, we believe that the presented LDA + DCA
approach is very promising and can be applied to a large variety
of multiorbital correlated compounds at different fillings.

ACKNOWLEDGMENTS

We would like to thank Y.-Z. Zhang and C. Gros for useful
discussions and we gratefully acknowledge financial support
from the Deutsche Forschungsgemeinschaft through Grants
No. FOR 1346 (H.L.) and No. SPP 1458 (J.F.) and from
the Helmholtz Association through Grant No. HA216/EMMI.
M.A. acknowledges support from the Austrian Science Fund,
Project No. F4103, and hospitality at Goethe-Universität
Frankfurt.

1M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039
(1998).

2E. Pavarini, S. Biermann, A. Poteryaev, A. I. Lichtenstein,
A. Georges, and O. K. Andersen, Phys. Rev. Lett. 92, 176403
(2004).

3W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).
4A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod.
Phys. 68, 13 (1996).

5G. Kotliar and D. Vollhardt, Phys. Today 57(3), 53 (2004).
6A. Liebsch, Phys. Rev. Lett. 95, 116402 (2005).
7A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev. Lett.
92, 216402 (2004).

8K. Inaba, A. Koga, S.-I. Suga, and N. Kawakami, Phys. Rev. B 72,
085112 (2005).

9R. Zitzler, N-H. Tong, T. Pruschke, and R. Bulla, Phys. Rev. Lett.
93, 016406 (2004).

10H. Lee, Y. Z. Zhang, H. O. Jeschke, and R. Valentı́, Phys. Rev. B
81, 220506(R) (2010).

11S. Biermann, L. de’Medici, and A. Georges, Phys. Rev. Lett. 95,
206401 (2005).

12P. Werner, E. Gull, M. Troyer, and A. J. Millis, Phys. Rev. Lett.
101, 166405 (2008).

13H. Ishida and A. Liebsch, Phys. Rev. B 81, 054513
(2010).

14M. H. Hettler, A. N. Tahvildar-Zadeh, M. Jarrell, T. Pruschke, and
H. R. Krishnamurthy, Phys. Rev. B 58, 7475(R) (1998).

15G. Kotliar, S. Y. Savrasov, G. Palsson, and G. Biroli, Phys. Rev.
Lett. 87, 186401 (2001).

165103-4

http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRevLett.92.176403
http://dx.doi.org/10.1103/PhysRevLett.92.176403
http://dx.doi.org/10.1103/PhysRevLett.62.324
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1063/1.1712502
http://dx.doi.org/10.1103/PhysRevLett.95.116402
http://dx.doi.org/10.1103/PhysRevLett.92.216402
http://dx.doi.org/10.1103/PhysRevLett.92.216402
http://dx.doi.org/10.1103/PhysRevB.72.085112
http://dx.doi.org/10.1103/PhysRevB.72.085112
http://dx.doi.org/10.1103/PhysRevLett.93.016406
http://dx.doi.org/10.1103/PhysRevLett.93.016406
http://dx.doi.org/10.1103/PhysRevB.81.220506
http://dx.doi.org/10.1103/PhysRevB.81.220506
http://dx.doi.org/10.1103/PhysRevLett.95.206401
http://dx.doi.org/10.1103/PhysRevLett.95.206401
http://dx.doi.org/10.1103/PhysRevLett.101.166405
http://dx.doi.org/10.1103/PhysRevLett.101.166405
http://dx.doi.org/10.1103/PhysRevB.81.054513
http://dx.doi.org/10.1103/PhysRevB.81.054513
http://dx.doi.org/10.1103/PhysRevB.58.R7475
http://dx.doi.org/10.1103/PhysRevLett.87.186401
http://dx.doi.org/10.1103/PhysRevLett.87.186401


DYNAMICAL CLUSTER APPROXIMATION WITHIN AN . . . PHYSICAL REVIEW B 85, 165103 (2012)

16T. Maier, M. Jarrell, T. Pruschke, and M. H. Hettler, Rev. Mod.
Phys. 77, 1027 (2005).

17S. Moukouri and M. Jarrell, Phys. Rev. Lett. 87, 167010 (2001)
18B. Kyung, J. S. Landry, D. Poulin, and A. M. S. Tremblay, Phys.

Rev. Lett. 90, 099702 (2003).
19H. Park, K. Haule, and G. Kotliar, Phys. Rev. Lett. 101, 186403

(2008).
20H. Lee, G. Li, and H. Monien, Phys. Rev. B 78, 205117 (2008).
21E. Gull, P. Werner, X. Wang, M. Troyer, and A. Millis, Europhys.

Lett. 84, 37009 (2008).
22Y. Z. Zhang and M. Imada, Phys. Rev. B 76, 045108 (2007).
23H. Lee, Y. Z. Zhang, H. O. Jeschke, R. Valentı́, and H. Monien,

Phys. Rev. Lett. 104, 026402 (2010).
24A. Liebsch, H. Ishida, and J. Merino, Phys. Rev. B 79, 195108

(2009).
25A. Toschi, A. A. Katanin, and K. Held, Phys. Rev. B 75, 045118

(2007).
26A. Toschi, G. Rohringer, A. A. Katanin, and K. Held, Ann. Phys.

(Berlin) 523, 698 (2011).
27A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev.

B 77, 033101 (2008).
28G. Li, H. Lee, and H. Monien, Phys. Rev. B 78, 195105

(2008).
29H. Hafermann, G. Li, A. N. Rubtsov, M. I. Katsnelson,

A. I. Lichtenstein, and H. Monien, Phys. Rev. Lett. 102, 206401
(2009).

30G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet,
and C. A. Marianetti, Rev. Mod. Phys. 78, 865 (2006).

31M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet,
T. Miyake, A. Georges, and S. Biermann, Phys. Rev. B 80, 085101
(2009).

32A. Liebsch, Phys. Rev. Lett. 90, 096401 (2003).
33B. Amadon, F. Lechermann, A. Georges, F. Jollet, T. O. Wehling,

and A. I. Lichtenstein, Phys. Rev. B 77, 205112 (2008).
34M. Karolak, T. O. Wehling, F. Lechermann, and A. I. Lichtenstein,

J. Phys.: Condens. Matter 23, 085601 (2011)
35J. Kunes, R. Arita, P. Wissgott, A. Toschi, H. Ikeda, and K. Held,

Comput. Phys. Commun. 181, 1888 (2010).
36I. A. Nekrasov, G. Keller, D. E. Kondakov, A. V. Kozhevnikov, Th.

Pruschke, K. Held, D. Vollhardt, and V. I. Anisimov, Phys. Rev. B
72, 155106 (2005).

37F. Lechermann, A. Georges, A. Poteryaev, S. Biermann,
M. Posternak, A. Yamasaki, and O. K. Andersen, Phys. Rev. B
74, 125120 (2006).

38I. A. Nekrasov, K. Held, G. Keller, D. E. Kondakov, Th. Pruschke,
M. Kollar, O. K. Andersen, V. I. Anisimov, and D. Vollhardt, Phys.
Rev. B 73, 155112 (2006).

39P. Werner, M. Casula, T. Miyake, F. Aryasetiawan, A. Millis,
and S. Biermann, Nat. Phys., advance online publication (2012),
doi:10.1038/nphys2250.

40Z. P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).
41M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada,

Phys. Rev. B 82, 064504 (2010).
42T. Saha-Dasgupta, S. Glawion, M. Sing, R. Claessen, and R. Valentı́,

New J. Phys. 9, 380 (2007).
43M. Aichhorn, T. Saha-Dasgupta, R. Valentı́, S. Glawion, M. Sing,

and R. Claessen, Phys. Rev. B 80, 115129 (2009).
44P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz,

WIEN2k, An Augmented Plane Wave + Local Orbitals Program
for Calculating Crystal Properties (Karlheinz Schwarz, Techn.
Universität Wien, Austria, 2001).

45A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein, Phys. Rev. B
72, 035122 (2005).

46F. F. Assaad and T. C. Lang, Phys. Rev. B 76, 035116 (2007).
47E. Gull, A. Millis, A. Lichtenstein, A. Rubtsov, M. Troyer, and

P. Werner, Rev. Mod. Phys. 83, 349 (2011).
48V. Anisimov, F. Aryasetiawan, and A. Lichtenstein, J. Phys.:

Condens. Matter 9, 767 (1997).
49P. Werner, A. Comanac, Luca de’Medici, M. Troyer, and A. J.

Millis, Phys. Rev. Lett. 97, 076405 (2006).
50P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006).
51C. Lin and A. J. Millis, Phys. Rev. B 79, 205109 (2009).
52B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs,

L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn,
R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo,
O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos,
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