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Decoupling method for dynamical mean-field theory calculations
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In this paper we explore the use of an equation of motion decoupling method as an impurity solver to be
used in conjunction with the dynamical mean field self-consistency condition for the solution of lattice models.
We benchmark the impurity solver against exact diagonalization, and apply the method to study thelnfinite
Hubbard model, the periodic Anderson model and pldemodel. This simple and numerically efficient ap-
proach yields the spectra expected for strongly correlated materials, with a quasiparticle peak and a Hubbard
band. It works in a large range of parameters, and therefore can be used for the exploration of real materials
using the local density approximation and dynamical mean field theory.
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I. INTRODUCTION (QMC),° the noncrossing approximatiotNCA),° and the
iterated perturbation theor¢lPT).!* Nevertheless, each of

Dynamical mean field theoryDMFT) was developed these methods has some drawbacks limiting its range of ap-
over the past 15 years into a powerful tool for the treatmenplicability. The QMC method is essentially exact, but be-
of strongly correlated electron systemiDMFT is based on  comes prohibitively expensive at low temperatures and for
the idea of mapping a complicated lattice model onto ahigh interaction strengttd. The NCA approximation, ap-
single impurity model coupled to a noninteracting bath. Itplied to the impurity model, exceeds the unitarity limit at low
relies on the observation that the self-enebk,iw,) be- temperatures and leads to pathologies in the solutions of the
comesk independent in infinite dimensioms=«,* making a DMFT equations. The IPT scheme, a method which was very
single site treatment with only temporal fluctuation exact insuccessful at arbitrary filling in the one orbital situation, has
this limit. The DMFT approach derives its strength from theencountered difficulties in its extension to the multiorbital
fact that it becomes exact in this nontrivial limit d« or ~ case. This provides the motivation of this article to investi-
infinite lattice coordination. Perhaps surprisingly, DMFT gate the usefulness of a previously known decoupling
proves to be a very good approximation eve#3 dimen-  scheme in the context of DMFT.
sions. By replacing complicated models with a single impu- The method for the solution of the Anderson impurity
rity model, the DMFT equations can then be solved with onemodel proposed here aims at working with an arbitrary non-
of the methods that have been developed to solve the Andeinteracting density of staté®OS) as input. Nevertheless, we
son impurity model. intend to show that even for the solution of model Hamilto-

The study of correlated materials has until a few years agaians like, e.g., the Hubbard Hamiltonian, a DMFT scheme
been conducted with two approaches that are very differenwith a closed set of equations gained from a decoupling
in spirit. On the one hand, density functional the¢BFT) scheme is superior to the direct solution of that Hamiltonian
calculations in the local density approximatirDA) have  with decoupling methods.
proven invaluable in the determination of the electronic
structure of real materials but there are a number of strongly
correlated materials where its predictions are even in quali-
tative disagreement with experiment. On the other hand, the The method of writing equations of motigBOM) for the
study of model Hamiltonians has provided a qualitative un-Anderson impurity model and decoupling them in order to
derstanding of many systems with strong correlations butlose the system of equations has a long histéi#In the
due to its dependence on parameters this method lacks pregerivation of the integral equation for the solution of the
dictive power for new materials. The combination of the twoinfinite U Anderson impurity model we follow the approach
approaches in the form of LDA+DMFTRef. 5 promises to  and the decoupling scheme of Cd$tThe Hamiltonian for a
deepen our understanding of strongly correlated materials agixed valent impurity i%®
some initial successes demonstfate.

A self-consistent LDA+DMFT calculation in a multiband ~ H =, £,CiCin+ 2>, EpnX™ + EoX%0+ ) (Vi G X"
situation requires the Anderson impurity model with arbi- kn n kn
trary values for the bath to be solved many tintesce for +V X", ), (1)
each point of thd grid of the LDA calculation, thus making
the impurity solver the bottleneck of the LDA+DMFT algo- Where the HubbarX operatorsxP?=|p)(q| are projectors for
rithm. Therefore it is important to find impurity solvers that impurity states [p) and (g|. They follow the (anti-)
are reliable and computationally cheap. Currently, the usuatommutation ruIeS[X“B,XV‘?]i:%yX“‘si 55, X7B. We deter-
choices for solving the Anderson impurity model in the mine the equation of motion for the-channelf-electron
framework of LDA+DMFT are quantum Monte Carlo Green’s function(GF) F(w)=((X"; X™)) by writing
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(XM X)) = (XX, + (XM HE X)) (2)

and evaluating the(anti-commutators.[We follow the
Zubarev notatiorG, g(w) =((A; B)). For the definition of the
correlation(-) see Eq(16).] The result is

(@ = £){(XOM; XMy = (X004 Xmm)
+ 2 V(X0 + XM, - X))
k

+ 2 VXM X0, (3
k

n#m

assuming that the hybridizatiorj does not depend on tie
componenim of the angular momenturdy The abbreviation
e;=E;n—Ejo was introduced. The averages over Xep-
erators are(X°%=1-n; and (X" =n;/N where the total
number off electrons is calculated as
N

ng=- 7_7,[ do’ f(0')Fr(w'), (4)
with the notationF(w) =F/(w)+iF (w). For the higher or-
der Green’s functions on the rhs of E() we also write
equations of motion:

(@ = g (X0 + XMy s XMO))
= VXM X))+ ) Vg Xy X))
q

n#=m
+ E Vq<<cqnxnockm;xmo>>v (5)
n#qm
(@ = £ ){(X"MCy X))
= = (X ) + 2 V(X CqumCiens X™))
q
(6)

+ 2 V((XOMCh i XTO)).
q
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n
1—nf+ﬁf+ll<w)

F = y 12
) e m M) (@) - M)
with the sums over correlation functions,
_ Vi no,
l(w)==- > Xy, (13)
k @7 &
n#m
ViV | .
(@) == > —<(ch o, (14)
kg @~ €k
n#m
and the hybridization function
V2
Alw) =2 —*—. (15)
kK W~ &

In the degenerate models we study in this paper, the sums
overn with n# m simply lead to factors oN-1. The sums
overk andq can be simplified further.

To that end, we replace the correlation functions by inte-
grals over the imaginary part of the corresponding Green'’s
function,

(ChCan) = - 7—17 f do’ f(@)IM{(CqnCt)).  (16)

The conduction electron Green'’s functi«ﬁ{u:qn;c;n» is de-
termined from its equation of motion,
S ViV,

&g (w_ak)(w_sq)

(Cani i) = — (O X)),

(17)

Now in order to simplify the sums in Eq§13) and(14), we

employ the identity
1

1 [ 1
(w-¢)w -8) o -o

1

o' —-&

| s

w— €&

We now employ the decoupling scheme already given in Ref.

15 that conserves the particle number and angular mome

tum (n# m is assumeyd

({CqXCum: X)) = (X Cumi XN, (7
{(CanX"Cym X)) == (CrnX ") {(Ciems X)), €)
(X CqurCiens X)) = (CinX" ) Cami X)), 9
(XM Gy X)) = (CuCin (XO™; X)) (10)

Note a sign difference in E¢9) with respect to Ref. 15. The
Green's function((cqm; X™)) appearing here can again be
determined from its equation of motion,
V,
{(Cqms X)) = ——L=((X™; X™)).
w — Sq

This leads to the equation from which thelectron Green's
function can be determined:

(11

"his allows us to identify occurrences of the hybridization
unction (15), and we find

- f(o'
() = 22 f dw'f—_)[F;«w')A(w)
v w w
— Im{F (") A(w")}], (19
N-1 f(e’
(@)=~ | do’ w(“: Z)[_ A"(w)
+ A(w)IM{F (0" )A(0")} = IM{F (o) A(0)?}].
(20)

Equationg12) together with(19) and(20) and the definition

of n; (4) form an integral equation foF,(w) that can be
solved iteratively. In order to compute the integrals of Egs.
(19) and (20) we introduce the following real functions:

An(®) = = f(w)IMF (o),
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B(w) = f(w)lmA(w)’ <Canckn> = TE <<Ckn; C;n>>iwneimn0+v (25)
iwp
Crl@) = f(w)Im{Fr(w)A(w)}, which replaces Eq16) for that purpose. In order to simplify
the equations, we employ the analog of Etg), namely
D) = f(@)IM{F(w)A(w)?}. (21) 1 o 11
Now the integrals read as (iwg— i —e) 1w, —iw,|ion=ex (0 — e
1 do’ Ao’ do' C(w’ 26
|1(w):_E[A(w)fiLw,)+JiLw,)]. (26)
n#m T 0T W T 0T W and we identify occurrences of the hybridization function,
s Vi
1 do’ B(w’) do’ C(w’) Aliw,) =2, - . (27
Iz(w):—EU——,—A(w)f—m—, R TR
Tatm T O~ W T O~ W
, This leads to the system of equations
do’ Do)
| — | (22 n
Tene L=n+ 5+ Sy

Thus, the calculation of the integrals reduces to simple  F(iwy) =: - . —,

evaluation of Kramers-Kronig integrals. The imaginary part lwn =&~ Aliwn) (1 + Syiwp)) + Syliwn)

for example of the first such integral is7A(w'). (28)
It turns out that this set of equations on the real frequenqovith

axis is solved easily for the Anderson impurity model, but as

we add self-consistency conditions in order to solve more . Aliw)) - Aliwy)

complicated models in the DMFT approximation, conver- Siiwy) =T - F

gence depends strongly on a good initial guess of the solu- I#m 1@~ 1@n

tion. For this purpose, we write equations analogous to Egs.

(12), (19), (20), and (4) on the Matsubara axis. Matsubara o, )

Green’s functions are much more smooth than their counter- Siio)=T> Aliwp) - A('wn){l +A(iw,’1)F|(iw,’1)}ei‘”3°+,

(iwh)e® (29

PN
i),

parts on the real frequency axis and thus converge more eas- Zm o) —iw,
ily. Nevertheless, the calculation of the Green’s function on i)
the imaginary axis does not make the real axis calculation (30)

redundant: First, the analytic continuation to the real axis is
only accurate for low frequencies due to a lack of high fre-

quency information in the Matsubara Green’s function. Sec- Ne=NTX Fr(io))dn® (31
ond, the dependence of the imaginary frequency grid on tem- iwp
perature,

With the replacement
iwp=(2n+ )7, (23)

AP o _ lf ’ ' ’
means that at high temperatures, the low frequency part of TE: Kliope™™ — T do” f)imK(e"), (32)
the Green'’s function is very badly resolved, while at very "
low temperatures, an inordinate number of imaginary freawe can easily recover EqgL9) and(20) from (29) and(30).
quencies is necessary to describe the Green'’s function for dll is important to note that good convergence of the self-
frequencies for which it significantly differs from zero. This consistent solution of the system of equations depends cru-
means that from a practical point of view, the Matsubaracially on the proper treatment of the slowly decaying high
Green’s function is best calculated at an intermediate temfrequency tails of the addends of E¢29)—(31). A high fre-
perature, providing via analytic continuation a sufficiently quency expansion of these addends was performed to deter-
accurate initial guess for the iterative solution of EtR) on  mine the coefficients of the terms proportional tddl{and
the real axis. This problem of the Matsubara formulation is1/(iw,)%. These terms were subtracted from the sums, and
not related to the well known difficulty in performing ana- their value was determined analytically.
lytic continuation to the real axis. The solution of the Anderson impurity model according to
All equations of motion are almost unchanged when wethe closed system of Egél2), (14), and (15) has been in-
go over to Matsubara frequenéy,, e.g., Eq.(17) becomes vestigated in detail in Ref. 15 and in a slightly less general
version in Ref. 13. It was found that the solution shows the
(X0 X0y, emergence of a Kondo resonance at low temperature. The
n temperature scaling differs from the exact result of Hald&ne
(24) by a factor of 2 in the exponent and in the prefactor. It was
shown by Luoet all? that by decoupling in a different way
Correlations have to be calculated as in the case of a degenerabl=2 the temperature scaling can

Siq ViVq

+- .
Wp~ &g (iwn=e(iw, = 8q)

<<Ckn;can>>iwn ar
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even be improved. The intensi_ty of the Kond(_) peak is below gal(iwn) o, + - 8?_ Aliwy). (38)

the value that would be required by the Friedel sum rule.

This means that in contrast to methods like NCA that exceed he derivation of these equations is contained in Appendix
the unitary limit for some parameter ranges, no unphysicaB.

self-energies are observed in the case of the decoupling ap-

proach. C. pd model

In order to study the Mott transition with thé=c impu-
rity solver described above, we consider the Hamiltotian
We now proceed to investigate the usefulness of the im-

purity solver detailed above in its application in the DMFT  H=-3 v, [d’ p;, + p;’adig] +ep, PioPjo + eq>, d di,
jo io

A. Hubbard model

context. Our application of the method to three lattice mod- ijo
els is an exploratory study concentrating on a small number E . .
of important properties only. It is not the intention of this +Ug : dy;diydiy d - (39

article to go into detail for each of the three models. We first

investigate the Hubbard model in order to study the quasiThis model, which we call @d model here, has been pro-
particle scaling of the Hubbard band with degeneriicy posed to study the physics of the Cu-O planes of the cuprates

We consider the Hubbard Hamiltonian, for which the interaction strengt)=~10 eV on the Cud
U orbitals is much higher than the charge transfer gafpf
H=-> ti;ClyCio = w2 GGt — > € CioCio i Cigr ~2 eV. In this situation th&) = approximation is expected
ijo io 2 to be very good as the physics of the problem is weakly
oo’ sensitive to the value d#?° provided thatJ is large enough.

(33)  The Hamiltonian(39) is similar to the Anderson lattice
Hamiltonian if the conduction electron dispersion is taken to

where the spin and orbital indexruns. from 1 toN. For Fhis be a constang,=s, and if thek dependence of the hybrid-
model, we have to solve the AIM with the self-consistency;,4tiony, is retained. This changes the local conduction elec-

condition tron Green’s function:
Aliwy) =t°Gyo,(iwy). (34)
local; _ H H
For the derivation of this equation, see Appendix A. Gy (iwp) = f dstd(S)('“’n +p= &g~ 2glion)
2 -1
B. Anderson lattice _ 8—)
lop+u—¢gp,

We study the application of the=oc impurity solver to
the Anderson lattice in order to learn how this new approach _ Ne1
compares to the straightforward decoupling of the equations =& dSde(s)(fpgd -e?) ™
of motion for the periodic Anderson mod€ We consider
the periodic Anderson Hamiltonian,

local — i —
HPAM == 2 tl(] Ci+(rcj0_ E tifjfitrfjtr + 802 Ci+a-Cicr + SfE fitrfi(r Gp ('wn) - J dSde(8)<|wn i “p
ijo ijo io io
U _ 82 )—l
+ 2 (Viﬂ'c?;rfi(r + V:(rf?;rci(r + E 2 fi-trfilrf:.g—’fi(r’ . iwn Tu—egT Ed(iwn)
io ioa’
ata! = §df deppq(e) (Lpla— €)™t (40)
(35
In this case, the self-consistency condition for fhelectron ~ with the abbreviationsl,=iw,+u—g, and {y=iw,+u—gq
Green’s function is —24(iwy). Here,p,4(e) stands for the density of states asso-
ciated with the hybridizatiotV,. Noting that
Glocali :fd (i + - 0_2 i
o llon) = | depolelllon g e illen) [ ottt 1] [ goode), [ gyt
Ve)? |\ x2—g? 2x X-¢ X+e
Ciwg+ —s) ' (36) 1 ~ -
" = 5D = D(-x)]
Here, the self-energy is determined from the equation
Jo (iwn) =G (iwy) + X(iwy), (37) = ? for symmetricppq(e), (42)
and the Weiss functiofiy(iw,) is related to the hybridization
function A(iw,) by we can writeG(iw,) andG§*(iw,) as Hilbert transforms:
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1F T T T
. §d~ J— = +
Gplion =\ 2D (\zko). v I Eowroem
p ED, T7=05 o
08  EOM,T=05 o .
Gt Hian) =\ ZB(eka) (42) o5 ]
d
We use a semicircular form fqr,q(e), 04 L ]
(6) =~ a2y — & (43)
ppd g)— Zwtrz)d\‘ pd e, 02 | ]
wheret, is the strength of the hybridization betweprand 0 doasszh 2 , , ,
d levels. -3 -2 -1 0 1 2 wp 3

It is worth pointing out that this method reproduces an
important aspect of the exact solution of the DMFT equa- FIG. 1. Density off electrons as a function of the chemical
tions within the context of thed model. Namely, it produces potential u=-g; for exact diagonalization and the equation of mo-
a first order phase transition between a metallic and an insuion method in comparison. The energy unit is the half bandwidth
lating phase, which is manifested by the existence of twd>- For the higher temperature=0.5, the two methods agree ex-

DMFT solutions for the same range of parameters. tremely well, while for the lower temperature=0.03, the exact
diagonalization gives slightly lower densities at the same chemical

potentialu=-¢;. Exact diagonalization was performed with 6 sites,
IIl. RESULTS and the Hubbard model was solved in the DMFT approximation.

A. Hubbard model »=0 and the Hubbard band is similar in both methods, but

First of all we test the performance of our impurity solver the EOM method leads to a better overall shape of the spec-
by comparing it with the results of exact diagonalizationtral function. We conclude that the EOM method results
(ED). For this purpose, we employ the code published accompare well with ED, giving us confidence that it is a use-
companying the review of the DMFT method in Ref. 1, ful approximation. Even for this low number &f,=6 sites,
modified to U=c. The Hubbard model is solved in the the exact diagonalization requires an order of magnitude
DMFT approximation. The self-consistency condition for themore CPU time than the EOM method.
Hubbard model is realized by minimizing the function Figure 3 shows the carrier density as a function of the
f(sk,vk):2n|tZG(iwn)—zkvﬁ/(iwn—gkﬂ with respect to the impurity positione;. The impurity position corresponds to
parameterss, and V,. Here, the exact diagonalization has the chemical potential, only with opposite sigr—&;. Due
been performed wittNs=6 sites which are divided into one to the infinite interaction, the maximum filling is one elec-
site for the impurity and five sites for the bath. Thus, thetron per site. In other words, the upper Hubbard band that
hybridization functionA(iw,,) is represented with five poles. could hold a second electron at finitehas been pushed to
This leads to a finite number of poles instead of a smoothnfinite energy. While at low temperatuile=0.03 then; ver-
function in the spectral function as well. Figure 1 shows theSUsu curves at different degeneraciis-2 to N=14 nearly
comparison of the densities blectrons as a function of the
impurity positione; (which is related to the chemical poten- 0.7 " T T y 4

tial by w=-¢;). The comparison shows that at high tempera- "’“3)6 i Im G(io,)
ture T=0.5, the results of exact diagonalization and EOM are )

virtually indistinguishable while for a lower temperattife os | sy
=0.03, the densities differ slightly for impurity positions be- i

tween—1 and 1. o4 X P NS

012 3 456
@, -

In Fig. 2, we compare the imaginary parts of the Green’s
function for a density oh;=0.84. The slight differences in
the n; versusu curves of Fig. 1 mean that this density is
achieved foru=0.6 in the case of ED and faxr=0.53 in the
case of EOM. The imaginary parts of the Green’s function on o1}
the Matsubara axis shown in the inset are very similar. Thus, o
the main figure shows the more demanding comparison of 0=
the densities of state. The continuous line represents the DOs ~~ ~ ~° 1 @ 0 o 1 1Sap?2
from the EOM method gained by analytic continuation inthe g, 2. Spectral functiongmain figuré and an imaginary part
Padé approximation, while the long dashes stand for thgf the Green’s functiorinset from exact diagonalization and the
EOM result on the real axis. The dashed curve with the fivequation of motion method in comparison. The temperatur€ is
poles is the result of DMFT on the basis of exact diagonal=0.03, the density of electrons is;=0.84 for both methods. The
ization. The figure shows that the distribution of spectraltwo methods compare well, considering that the exact diagonaliza-
weight between the Kondo peak around the Fermi level ation with 5 bath sites has only limited resolution on the real axis.

03

02} T=0.03

ne=0.84

i
i 2 N " L

085103-5



H. O. JESCHKE AND G. KOTLIAR PHYSICAL REVIEW B71, 085103(2005
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FIG. 4. Density of stateps(w) of f electrons for the infinitéJ
Hubbard model. The energy unit is the half bandwiéth(a) At
high temperaturél'=0.5, there is no quasiparticle resonancewat
=0. (b) At low temperaturel=0.03, the quasiparticle resonance at
=0 is clearly developed. The weight of the Hubbard band is pro-
portional to 1N.

FIG. 3. Densityn; of f electrons as a function of the chemical
potentialu for the infiniteU Hubbard model. Energy is measured in
units of a half bandwidttD. (a) At high temperaturd=0.5, n;(e5)
differs for different values of the degenerady(b) At low tempera-
ture T=0.03, theny(e;) for differentN nearly coincide.

coincide[see Fig. &)], they differ considerably at high tem-
peratureT=0.5[see Fig. 8a)].

In Fig. 4 we show examples of the spectral function for
degeneracies betwed®h=2 andN=14 for high and low tem-
perature. While af=0.5 the spectral function is nearly un-
structured, aff=0.003 a broad Hubbard band and a quasi-
particle resonance at zero frequency=0 can be C. pd model
distinguished. The weight of the Hubbard band diminishes as
1/N as the degenerady increases while the intensity of the

Kondp pe_aks'remalns n'early constant. Note that thg spectrﬁon strengtht, 4 between the two bands. From the analysis in
functions in Fig. 4 resulting from the DMFT self-consistency Bef 19 of thr:a finiteU version of this model, we expect a

contain no spurious side bands as those calculated by directrx . o . L
. . . etal insulator transition to occur at a fixed density=1 if
decoupling the equations of motion produced by the Hub- . : :
= 8 X . . we vary the level separatiofy, at a givent,y. Figure Ga)
bard Hamiltoniart® In our calculation, the imaginary part of h h It of thi loulati Pf. “1 Th
the Green’s function outside the Hubbard band and resgz o"> the result of this calculation at a fixgg=1. e
nance is exactly zero temperature was taken to e=0.01. For level separations
y ' Ap=0 and Ay=0.5, the densityn,,; aroundn,,;=1 changes
smoothly as a function of chemical potential. But beginning
with Ay=1.0, a charge transfer gap =u(n;=1") — (N
Figure 5 shows examples for the conduction electron anek17) begins to open up. Thus, the physics discussed in Ref.
the strongly correlated electron spectral functionglashed 19 for finite values ofU can be also found fotJ=o. The
and full lines, respectively In Fig. 5@a), the hybridization critical value attyy=1 is A;=1. Note that theAp=4, U=8
between the two bands is smé&#?=0.01) while in Fig. 5b)  result in Fig. 1 of Ref. 19 compares well with tig=4, U
it is rather large(V?=0.2). Correspondingly, the conduction = curve of this work’s Fig. 6). If we increase the hybrid-
electron DOS shows only a small dip at the position offthe ization strength tat,=4 [see Fig. @)], we find that the

band for a low value of the hybridization. Interestingly, we
find a Kondo resonance at the Fermi level in thelectron
DOS. This resonance was absent in the decoupling approach
to the periodic Anderson model of Ref. 15.

We investigate thepd model Hamiltonian, Eq(39), as a
fonction of the separatiod,=¢e,~&4 and of the hybridiza-

B. Anderson lattice
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FIG. 5. Densities of states(w) andpe(w) of f and conduction FIG. 6. The total density of electrons as a function of chemical

electrons for the infinitdJ periodic Anderson modela) At a low  potential for thepd model Hamiltonian(39). The hybridization
hybridizationV?=0.01, thef electron Green’s function is mainly a strengths werda) t,q=1 and(b) t,q=4. The plateaus at densities
peak at the impurity position; there is no quasiparticle resonance af, ;=1 andn,,,=2 correspond to the insulating phases.

»=0. (b) At a high hybridizationv2=0.2, the Hubbard band of the

f electron Green’s function is split into two peaks, and the quasi-

: : IV. SUMMARY
particle resonance ai=0 is clearly developed.

A method to solve the Anderson impurity model with the
critical A for the metal to charge transfer insulator increaseselp of equations of motion and decoupling has been tested
to Ap=4. In Fig. 6a), we also note the transition at a total for its suitability as an impurity solver in the framework of
densityn,=2 from a metal at higher level separatidpto a  dynamical mean field theory. The application to three lattice
band insulator with a ga,=u(Me=2")~w(Ne=2"). For  models in infinite dimensions and for infinite interaction
the higher value of the hybridization strendfh, the system  strengthU shows very encouraging results. In the application
is a band insulator at,=2 for all studied level separations 4 the Hubbard model, we see a correct quasiparticle scaling
Ao of the Hubbard band with respect to the degeneracy. In the

. é_n wgportant qu?hstlon_lr; the m(%:‘tal o m_sE[JIator transition e jndic Anderson model, we find a Kondo resonance which
of Fig. 6 concerns the existence ot a coexistence region. absent in a direct decoupling of the equations of motion.

can show that such a coexistence is indeed found with OUthis underlines the usefulness of the approach chosen here:

method. Figure 7 shows spectral functions doand p elec- : )
trons at a hybridization strengthy=1, a separatioly=s To use a decoupling scheme for the solution of the Anderson

—e4=1 and a chemical potentigi—s,=0.3. The calculatign impurity model which is then employed to solve lattice mod-
was performed for a temperature ©10°°, and care was gls in the DMFT approximation. Intgrestingly, the applica-
taken to resolve the sharp peak of the noninteracting Greenon Of our approach to thed model yields a coexistence of
function G,(w) ate,=0.5 with the help of a logarithmic grid. the insulating and metallic phases. The extension ofuhe
The full line shows the converged result of a direct calcula-=> @Pproach discussed here to finite values of the interaction
tion at u—e4=0.3. A quasiparticle peak ai=0 for both the  StrengthU is possible and in preparation. The numerical ef-
correlated and the uncorrelated electrons makes this a metdiciency of the method makes an application in an LDA
lic solution. The dashed line was obtained by starting thet DMFT context feasible.

calculation in the insulating region at—¢4=0.5 and lower-

ing the chemical potential in steps of 0.01. At £4=0.3, the ACKNOWLEDGMENTS
solution is still insulating as no quasiparticle peak has H.O.J. gratefully acknowledges support from the
formed. Deutsche ForschungsgemeinschBfEG) through the Emmy
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FIG. 7. The spectral function for thed model Hamiltonian(39) showing the coexistence of a metallic and an insulating phase. The
hybridization strength wat,q=1, thepd separatiom,=1. (a) and(b) show the correlated spectral function(c) and(d) the uncorrelated
p spectral function. In the case @) and(c), the solution was calculated directly for a chemical potentialtq=0.3 and the solution is
metallic due to the sharp Kondo resonance at the Fermi level. In the cdg¢ afhd (d), the chemical potential was changed e g4
=0.3 in small steps, starting from an insulating solution. The resulting DOS is still insulating. Note thagimd (d) the sharp peak of the
noninteracting DOS at,=0.5 is not shown.

Noether Programme. He is also thankful for inspiring discus-been replaced by Grassmann varialdgér), ¢, (7).

sions with Kristjan Haule, Theo Costi and Sarma Kancharla. The cavity method now requires that we focus on one site
G.K. is supported by NSF DMR-0096462. i=o0 and separate the HamiltonidB3) into three parts, one
relating to siteo only, one connecting this site to the lattice,

APPENDIX A: DMFT SELF-CONSISTENCY CONDITION and one for the lattice with site removed,

FOR THE HUBBARD MODEL

" . . I H=H,+Hc+H®, (A3)
The partition function corresponding to the Hamiltonian
of Eq.(33) is U
Ho= =12 CuCort 5 2 CouCorCopCorr  (A4)
- f H DEi(TDCirre_Si (Al) o oo’
i o#+o’
with the action - 2 [tiOCi-:TCO(T + tOiC;(TCiO':I! (AS)

io

B
f dTECI(r(T) C.U(T)+f dr| = 2 t;Cio(7)Cjo(7)
0 0 o H(O):_ E CJo— E CIO'CIU'

i#oj#O(r i#00
S G C(D 2 S GG (PCr (PG () U st
M |0’ Io’ 2 io io io’ io’ g + — 2 CiO'CiO'CiU’CilT" (AG)
io ioco’ 2 . ’
#0000
o#a’ i

(A2) The three parts of the Hamiltonian correspond to the action
where the Fermion operatoc§, c;,, of the Hamiltonian have S, of site o, the actionAS for the interaction between site
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and the lattice and the acti@P of the lattice without site: p B
e JodmASn) = 1—f drAS(7)
B - J 0
S=| drf 2 Tou(| o- = 4 |Cos(n) 18 (*
0 o T +5f drlf drAS(7) AS(7p) =+ .
*Jo 0

U _ _ (A11)
+ = D CoulMCop(NCop(NCor (D) |, (A7) o _ _
2 Taking into account that in general an operator average with
p—; respect to an actio8 can be expressed as
P f H De,De,e 5AC,,C,]
AS: - f d7-|:2 tiOEiU(T)COU(T) + tOiEOU(T)CiU(T)] ’ <A>S: I
0 io
= -S
(A8) f H D¢, De,e
8 5 =z! f [IDe.De.eAC,cal,  (AL2)
s9= f dr| X 0| - - (D) i
0 aT

#00 we can consider the second functional integralAi0) to

average the terms of the expansi@il) with respect to the
- X ti;Cio(7)Cjo(7) lattice actionS©:

i#0j#00 B
U Z= J HDEO,,Dcoge‘%zgo){l— f dXAS(7))g0
+E Y Co(DCio(DTip (DT (1) | (A9) i 0

i#ooa’

1 B B
] f dTJ dr(AS(T)AS(7)))g0 =~ [ . (A13)
*J0 0

The aim is now to integrate out all lattice degrees of freedo
except those of site in order to find the effective dynamics
at siteo. In that process, the actio®, remains unchanged,

rT]—|ere, the partition function of the lattice without siteis
abbreviated as

the terms ofAS are expanded in terms of the hoppihg _ _ _qo
which becomes small with increasing dimension and aver- Zgo = HDCaDCae ' (A14)
aged with respect to the acti@®?. Defining AS(7) via AS
=[BdrAS(7) the partition function is Now the terms in(A13) with odd powers ofAS will average
to zero. For example,
Z= f De,, Dey,e | [ De, Do, oS e /bamsn, (AS(7))g0 = % tio(Cio(( 7)) 501Co0(7) + toiCo0(T){Cin(7))50 = O,
i#o0
(AL0) (A15)
because the averageqo acts on all sites except The next
Now we can expand the last exponential function as average in(A13) yields

lo jo!

(AS(1)AS(7p)) g0 = <Tr[2 tioCio(71)Coo(T1) + toiEO(r(Tl)Ci(r(Tl)] X [E tioCjo (T2)Cogr (T2) + tOjEO(r’(TZ)Ci(r’(TZ)]>
. <0

=> tiotojCoorl T(T Cig(T1)Cjor (T2))50Coq (72) + > toitioCoo( T(T Cig(T1)Cj o (72)) g01Co0r (72)
ijoo’ ijoo’
=2 2 tiotojCool T(T Lio(71)Tj0r (72))501Co0 (72)
ijoo’
= 2? tiolojCool T Cip(71)Cjo T2)) §01Co0( 72)
== 22 tiOtOjEO(T( 71) Gi(jo()r( 71~ T2)Co0(T2). (A16)

ijo

085103-9



H. O. JESCHKE AND G. KOTLIAR PHYSICAL REVIEW B71, 085103(2005

The imaginary time ordering operatdr, enters because

the path integral leads to imaginary time ordering. Z= j HDEOUDCOUE_SE”- (A18)
Only terms with =0’ contribute as we are considering !

a paramagnetic state and thusT.ci,(71)Cj, (7))o

= 050{TCis(T)Tjs(72))50. We have identified the average

with  the cavity Green’s function Gi(j"()r(rl—rz) Noting that the next term in the expansion (@f17) would
:—<TTCi(,(7'1)Cj+U(7'2)>S(o), i.e., the Green’s function of the Hub- read as

bard model without the site. Now we have for the partition

function,
B B B B B B
z:J 11 pe,, e, e 57409 1 —f d71J dr, f drlf deJ de,J dry
T 0 0 0 0 0 0
_ X 2, Cool71)Cou(73) Cog(T2) Coul T
XE tiOtOjCOa(Tl)COU(TZ)Gi(jO()r(Tl_ Tz)*’"'}- ili2j12jza o070 Co0(75) oo 72)Coo{ 72
ijo
(A17) Xt ot oto,toj, Gl o (7178 T27a), (A19)
We would like to write the brackelt} in (A17) again as an
exponential function in order to identify an effective action
St we can write for the partition functiofA17)

Z= f 11 pe,,De, e 5Zg0exp - >, >,
i

n=1 o

B B
dry - f A72n0Co0(71)" * “Cool Tan-1) Cou(72)" * *Cou(T2n)
0 0

x 2 tiyo' "ty otojy o), Gl oy oo (71 Ton-1s T2 Tan) L (A20)

All terms but the first in this sum ovaer turn out to be at 1 J ©
least of order 1d so that they vanish in the limit of infinite 9o (71~ ™) == | ~— = 1|81, = 2 tiotoiGif(m = 1),
ij

dimensiond=«. Thus, in this limit we find for the effective !
action, (A22)
S L we finally get
Si=S+ E f dTlf d7yCo0(T1)Cop(72) Y9
o 0 0
© B B .
XE tiotojGijo(71— 72) Si=-> f dTlJ A75Co0(11)G, (71 = 72)Cog(T2)
ij o Jo 0
B B 9 B U
= f dr| > Tyl Pl CoolT) + f dTE D Coo(MCou(DCou (T)Copr (7). (A23)
0 o 0 oo’
oto’
U _ _
*5 2 Coo( Do (DTou (M)Copr(7) The equation
o#a’ _
Gi(jo(z- = Gij o GiOo'Goéa-Goj(r (A24)

B B
+2 j dry j A75Cos(T1)Con( 1) 2 ticto Gfp(1 = 7). _ _
o Y0 0 ij is needed to relate the cavity Green'’s function to the Green’s

(A21)  function of the latticeG;,. Going from imaginary time to
imaginary frequency and combining witi\24), the Weiss
and introducing the Weiss field, function (A22) reads as
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Gy iwn) =i+ p = 2 toto Gif)(iwp)
1]
=iwn+ = 2 tiololl Gijoliwp)

ij

= Giooliw) Gyt (i) Gojeliwy) ] (A25)

If we now go from real space tospace we can simplify this

equation. Introducing the Fourier transfoi@y,, via

Gijo’(iwn) = 2 eikRij Gku’(i wn), (A26)
k

we find

> tioGioolion) = 2t R (iwy) = X ,Goliwy),
i i K k

E tIOtOJGIJ olwy) = E tIOtOjE ekR”Gka(|wn)
ij ij

=D 2 o8 R0ty oGy (iw,)
ki i

=2 Gy lion). (A27)
k

In the general form of the Green’s functid® (i w,) =i,

+u—g—2,(iwy) we introduce the abbreviatiofi=iw,+ u

-3 (iwy) to getG l(iw,) =&-¢ and determine the sums

2 & Gyoliwy) = E

kfak

_Eek §+§ 1+E 3

Kk E-ex K E—&

== 1+£> Glioy) == 1+EGgguliwy),
k

elex—§ + e
S si6y o) =% 7= g =
= E e+ £
k § &k
=4-1+ §G00(r(iwn)] =—¢&+ ngow(iwn)-

(A28)
With this, the Weiss functioifA25) becomes

G M iwy) =iwg+ = 2 eiGy,(iwp)
k

- (% ekek(,uwn)) Gt liwn)

= i(J’)n +u+ éE- szow(i wn) + [_ 1+ fGow(i wn)]
X[~ Goa (iwp) + €] =iy + p— E+ G, (iwp)
=3 (iwy) + Ganyliwp). (A29)

This equationG,z (iw) =G, (iwy) —2(iw,) is the Dyson
equation for the local Green’s function.

PHYSICAL REVIEW B 71, 085103(2005

The effective action(A23) can now be interpreted in
terms of the Anderson impurity model, i.e., the Anderson
impurity model gives rise to an action which becomes iden-
tical to (A23) if an additional self-consistency condition is
fulfilled. The Hamiltonian for the Anderson impurity model
is

H= E SkC;a-Cku' + 2 (VkC‘I:a-f(r + V;fzck(r) - 2 Iu’f;f(f
ko ko o

+—2ffff

oo’

(A30)

whereo runs from 1 to the degeneradyl The action corre-
sponding to this Hamiltonian will consist of a purely local
partS, concerning only thd electrons,

B - 3
so:f dr| X fU(T)<§_‘M)fa(T)
0 o T

U _ _
5 2 D (Df(0 |, (A3D)

!
ago
o#a’

and a part involving conduction band electrons that can be
integrated out

S:Sb““f dTE |:Cku T)( +8k)cko( 7) + ViCio (DT o(7)
0

+V’;i,(r)ckg(r)]. (A32)

Now the partition function for the Hamiltonia@®30) is

= f Df,Df, J [1Dzt,Deipe

JDf Df € Sof HDC,UDcmexp{f dTE Ceo(D

J ~
X ((9_ + 8k> Cko’( T) + Vkék(r( T)f(r( T) + kao'( T)Cko'( 7-):| }
T
- _ Jd
= f Df, Df e[| de(— + sk>
K aT
BB _
X ex E J d”rlf d7of () V| Vi
ko 40 0
(9 _1
X ((9_7'1 + 8k) 571721:0'(72) .

In the last step, the terms involvirfgelectronsvﬂfg(r) and
V,f,(7) were taken as source terms, which makes the term in
the exponent a Gaussian integral that can be evaluated di-
rectly. The determinant constitutes a constant factor in the
partition function that does not concern us here. We are left
with an action for thef electrons that reads as

(A33)
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B B _ J APPENDIX B: DMFT SELF-CONSISTENCY CONDITION
S J dnj dr 2 fo(m) ( 17y FOR THE ANDERSON LATTICE
5 _1 We again focus on one siteo and split the Hamiltonian
_ vV 2<_+ ) f into three parts:
% | k| (97_1 €k 7'17'2 (7-2) ~ o
Hpam =Ho+He+H'?, (B1)
B U _ _
+ — ! ! .
fo d7-2 0%, fU(T)fU(T)fU (T)fa (T) (A34) SCE CO(rCO(r+ sz fO(rfOO' + 2 (VO()' 00 O(r + VO(rfO(rCO(r)
o*a’
If we now compare this to the effective action of the Hub- + v > f;(rfo(rf;grfmr': (B2)
bard modelA23), we see that they are identical if we require oo
that the Weiss functiog(r, — 1) fulfills the condition oo’
9 -1
G- ) :—(— w) S, 2 |vk|2(—+sk) 8y 2 [tioCiuCor + teiCasCiol, (B3)
(97'1 172 (97'1 172
A35
( ) H(O):_ E tCCI(rCJ0'+SCE CI(rCI0'+8f 2 fl(r io
Going from imaginary time to imaginary frequency, this i#0j#00 i%oo i#00

equat|0n reads as U . . .
|V| + 2 (Vm-cm- |<r+V|(rf|(rC|rr) + E E firrfi(rfig’fifr”
1 K i#00 i#ooo’
G Hiwy) =iwg+p=2 ——— (A36)

k Iwn_sk oto’

Here we can identify the usual definition of the hybridization (B4

function A(iw,) in the Anderson impurity model, H. has the same form as in the Hubbard model, but the local
part H, is more complicated as it contains two species of

Al =S K \25 (A37) electrons, conduction andelectrons. Nevertheless, we can
R PR proceed completely along the lines detailed for the Hubbard

model above, expanding the actia&x& arising fromH; in

If we now equate Weiss functioni#29) and(A36), we find  order to arrive at an effective action for siieln this case we

the DMFT self-consistency condition in terms of a prescrip-have

tion for A(iwp):

P - J
Aliop) =ion+ -3, (o) -Gk (iw).  (A38) S= fo dr ng(T)(a_ﬁgf)f“(T)

On the Bethe lattice and with a half bandwidth£ 2t, we
have a noninteracting density of states,

U _ _
+E 2 foa'(T)fOU(T)fOU’(T)fOo"(T)

1 s -~
pole) =55 Va2 - g2, (A39)

o#o’
and thus we can write for the local Green’s functi@vith + 2 Cool T)( + SC)COU (D+> (VooCoo (Do)
gziwn'l'/u'_zo(iwn))y o
1 a3
Gogoliwy) = > Gliwy) = >, —— = f de pol€) + Vo, foo(7)Co0(7)) (B5)
k K £ e é-e
1 (3 Jat2-g? and

=0 ]
2mt?) 5 E-e B (B
1 S =S+ f dry f A75Co0(71)Co0(72) 2 tioto Gif (71 = 7).
= > 5l6- sgrRedV& - at’]. (A40) ° 0 i

2t2[ (B6)
From this we gain the expression In the d— o= limit, the Green’s function becomes
t?Gogq(iwn) = &+ Gy liwy) =0, (A41) G-t k) = (iwn +u-ed=S(iwy) Vi )
which combined with Eq(A38) leads to a simplified form of " Vi ion+ =g/
the self-consistency condition: (B7)
Aliwy) =t?Gyo,(iwy). (A42) Inverting the matrix according to
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_(A B ~ 2_ 1 (C -B
M'( ) M _deM( ) (B8)

B C -B A
we find
1
Gliwp, k) = = - -
¥ ['wn"'M_s?_zfown)]('wn"'l’v_sk)_VE
(iwn + e = Vk )
X . 0 . .
= Vi fwn+ u—ef — Zlion)
(B9)
Thus, we find for thef electron Green’s function,
V2 -1
Gyliwn,k) = (iwnw—s?—zf(iwn) - —k> :
lon + u = &
(B10)
and for the conduction band Green’s function,
G (iwn,k) ( + Vﬁ >_1
iwn,K) =11 - - - )
e O ot = 6Y = S iwy)
(B11)
We get the local propagators asG;(R=0,iw,)

=3, Gi(iw,, k)€K by summation ovek:

Glfocal(iwn) - E Gi(iwp, k) = f d8p0(8)<iwn +u- 8?
k

_S e - L(‘B)Z)'l
2f('wn) o+ e )
G, = f dspo<s>(iwn e

~ V(8)2 )—l
ion+ p—ef ~Siliog) )

(B12)

For computational purposes it is useful to note that for the
case of an energy independeits) =V, G°(iw,) can be

written as a Hilbert transforrﬁ(g)=f°_°ocdsD(s)/(§—s):

~ V2
Gl :D(i +u- )
e PR T

(B13)

Rewriting GI°*®(iw,,), we can likewise reduce the energy in-

tegral to the calculation of a Hilbert transform:

PHYSICAL REVIEW B 71, 085103(2005

1
wnt - 8?_2f(iwn)

Glfocal(iwn)=fdspo(8) i

V2
+ . O . 2
[iwn+ u—ef = Ziwn)]
1
X V2 ,
i, + u—e-
O ot = 68 = Sq(iwn)
(B14)
and with Eq.(B13),
1
Glocal(iw):. '
f " |wn+ﬂ_8?_2f(|wn)
V2 |
+ Gocaliw )
llon+ gm0 Syl P
(B15)
If we now assume a semicircular DOSD(e)

=(1/2mt?)\4t2- &2 for the hybridizationv, we can explicitly
write for the Hilbert transform,

~ 1 2 \r’4t2_82 1
D(¢) = = —5[{~sgr(Re))\ - 4t7].
© 27Tt2f_2td8 e gl SOMREDVE - 4]

(B16)

Thus, on the Bethe lattice the self-consistency condition can
be calculated without an integral over energies. We also need
the Dyson equation,

Goliwn) = G iwp) + S (iwp).

From the high frequency limit of this equation we can find
the form of the Weiss functio@gl(iwn) by comparing the
terms of the expansion order by order. Expanding (B4-2)
we find

(B17)

_ 1 . 1\ .
Giliwy) = E"'[S?_M"'Ef(lwn)](E) foriw, — .
n n

(B18)
Expanding the inverse, we find
Giliwy) =iwg+p—e¥ 3w, forim,— .
(B19)

Thus, we find from Eq(B17) the high frequency form of the

Weiss function:
Goliwn) = iwy+ - €. (B20)

The hybridization functiomA(iw,) contains what we have
neglected in the high frequency expansion:

Golliwp) =iwn+ u—e? = Aliwy). (B21)

085103-13



H. O. JESCHKE AND G. KOTLIAR

*Electronic address: jeschke@physics.rutgers.edu
Electronic address: kotliar@physics.rutgers.edu

1For a review, see A. Georges, G. Kotliar, W. Krauth, and M. J.

Rozenberg, Rev. Mod. Phys$58, 13 (1996, and references
therein.

2W. Metzner and D. Vollhardt, Phys. Rev. Le#2, 324(1989.

3A. Georges and G. Kotliar, Phys. Rev. 45, 6479(1992.

4E. Miiller-Hartmann, Z. Phys. B: Condens. Mattgd, 507
(1989.

5V. Anisimov, A. Poteryaev, M. Korotin, A. Anokhin, and G. Kot-
liar, J. Phys.: Condens. Matte, 7359(1997).

6S. Y. Savrasov, G. Kotliar, and E. Abrahams, Nat(irendon
410 793(2001).

7K. Held, A. K. McMahan, and R. T. Scalettar, Phys. Rev. Lett.
87, 276404(2001).

8For a review, see K. Held, I. A. Nekrasov, G. Keller, V. Eyert, N.
Blimer, A. K. McMahan, R. T. Scalettar, Th. Pruschke, V. I.
Anisimov, and D. Vollhardt, Psi-k Newsletter #56, 2003, p. 65;
and A. |. Lichtenstein, M. |. Katsnelson, and G. Kotliar,Biec-

PHYSICAL REVIEW B71, 085103(2005

tron Correlations and Materials Properties 2dited by A. Co-
nis et al. (Kluwer Academic/Plenum Publishers, New York,
2003, p. 75.

9J. E. Hirsch and R. M. Fye, Phys. Rev. Lefi6, 2521(1986.

104, Keiter and J. C. Kimball, Int. J. Magril, 233(1977).

11H, Kajueter and G. Kotliar, Phys. Rev. Leff7, 131(1996.

12A. Theumann, Phys. Re\l78, 978 (1969.

13C. Lacroix, J. Phys. F: Met. Phyd1, 2389(1981).

14y, Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. L&®, 2601
(1993.

15T, A. Costi, J. Phys. C19, 5665(1986.

18F, D. M. Haldane, Phys. Rev. Lett0, 416 (1978.

17H. G. Luo, J. J. Ying, and S. J. Wang, Phys. Rev5B, 9710
(1999.

18C. Gros, Phys. Rev. B0, 7295(1994.

194, Georges, G. Kotliar, and W. Krauth, Z. Phys. B: Condens.
Matter 92, 313(1993.

20J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. L%S5}.
418(1985.

085103-14



