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In this paper we explore the use of an equation of motion decoupling method as an impurity solver to be
used in conjunction with the dynamical mean field self-consistency condition for the solution of lattice models.
We benchmark the impurity solver against exact diagonalization, and apply the method to study the infiniteU
Hubbard model, the periodic Anderson model and thepd model. This simple and numerically efficient ap-
proach yields the spectra expected for strongly correlated materials, with a quasiparticle peak and a Hubbard
band. It works in a large range of parameters, and therefore can be used for the exploration of real materials
using the local density approximation and dynamical mean field theory.
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I. INTRODUCTION

Dynamical mean field theorysDMFTd was developed
over the past 15 years into a powerful tool for the treatment
of strongly correlated electron systems.1–3 DMFT is based on
the idea of mapping a complicated lattice model onto a
single impurity model coupled to a noninteracting bath. It
relies on the observation that the self-energySsk , ivnd be-
comesk independent in infinite dimensionsd=`,4 making a
single site treatment with only temporal fluctuation exact in
this limit. The DMFT approach derives its strength from the
fact that it becomes exact in this nontrivial limit ofd=` or
infinite lattice coordination. Perhaps surprisingly, DMFT
proves to be a very good approximation even ind=3 dimen-
sions. By replacing complicated models with a single impu-
rity model, the DMFT equations can then be solved with one
of the methods that have been developed to solve the Ander-
son impurity model.

The study of correlated materials has until a few years ago
been conducted with two approaches that are very different
in spirit. On the one hand, density functional theorysDFTd
calculations in the local density approximationsLDA d have
proven invaluable in the determination of the electronic
structure of real materials but there are a number of strongly
correlated materials where its predictions are even in quali-
tative disagreement with experiment. On the other hand, the
study of model Hamiltonians has provided a qualitative un-
derstanding of many systems with strong correlations but
due to its dependence on parameters this method lacks pre-
dictive power for new materials. The combination of the two
approaches in the form of LDA+DMFTsRef. 5d promises to
deepen our understanding of strongly correlated materials as
some initial successes demonstrate.6–8

A self-consistent LDA+DMFT calculation in a multiband
situation requires the Anderson impurity model with arbi-
trary values for the bath to be solved many timessonce for
each point of thek grid of the LDA calculationd, thus making
the impurity solver the bottleneck of the LDA+DMFT algo-
rithm. Therefore it is important to find impurity solvers that
are reliable and computationally cheap. Currently, the usual
choices for solving the Anderson impurity model in the
framework of LDA+DMFT are quantum Monte Carlo

sQMCd,9 the noncrossing approximationsNCAd,10 and the
iterated perturbation theorysIPTd.11 Nevertheless, each of
these methods has some drawbacks limiting its range of ap-
plicability. The QMC method is essentially exact, but be-
comes prohibitively expensive at low temperatures and for
high interaction strengthU. The NCA approximation, ap-
plied to the impurity model, exceeds the unitarity limit at low
temperatures and leads to pathologies in the solutions of the
DMFT equations. The IPT scheme, a method which was very
successful at arbitrary filling in the one orbital situation, has
encountered difficulties in its extension to the multiorbital
case. This provides the motivation of this article to investi-
gate the usefulness of a previously known decoupling
scheme in the context of DMFT.

The method for the solution of the Anderson impurity
model proposed here aims at working with an arbitrary non-
interacting density of statessDOSd as input. Nevertheless, we
intend to show that even for the solution of model Hamilto-
nians like, e.g., the Hubbard Hamiltonian, a DMFT scheme
with a closed set of equations gained from a decoupling
scheme is superior to the direct solution of that Hamiltonian
with decoupling methods.

II. THEORY

The method of writing equations of motionsEOMd for the
Anderson impurity model and decoupling them in order to
close the system of equations has a long history.12–14 In the
derivation of the integral equation for the solution of the
infinite U Anderson impurity model we follow the approach
and the decoupling scheme of Costi.15 The Hamiltonian for a
mixed valent impurity is15

H = o
kn

«kckn
+ ckn + o

n

EfnX
nn + Ef0X

00 + o
kn

sVkn
* ckn

+ X0n

+ VknX
n0cknd, s1d

where the HubbardX operatorsXpq= uplkqu are projectors for
impurity states upl and kqu. They follow the santi-d
commutation rulesfXab ,Xgdg±=dbgXad±ddaXgb. We deter-
mine the equation of motion for them-channel f-electron
Green’s functionsGFd Fmsvd=kkX0m;Xm0ll by writing
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vkkX0m;Xm0ll = kfX0m,Xm0g+l + kkfX0m,Hg;Xm0ll s2d

and evaluating thesanti-dcommutators. fWe follow the
Zubarev notationGA,Bsvd=kkA;Bll. For the definition of the
correlationk·l see Eq.s16d.g The result is

sv − « fdkkX0m;Xm0ll = kX00 + Xmml

+ o
k

VkkksX00 + Xmmdckm;Xm0ll

+ o
k

nÞm

VkkkXnmckn;X
m0ll, s3d

assuming that the hybridizationVk does not depend on thez
componentm of the angular momentumJ. The abbreviation
« f ;Efm−Ef0 was introduced. The averages over theX op-
erators arekX00l=1−nf and kXmml=nf /N where the total
number off electrons is calculated as

nf = −
N

p
E dv8 fsv8dFm9 sv8d, s4d

with the notationFmsvd=Fm8 svd+ iFm9 svd. For the higher or-
der Green’s functions on the rhs of Eq.s3d we also write
equations of motion:

sv − «kdkksX00 + Xmmdckn;X
m0ll

= VkkkX0m;Xm0ll + o
q

nÞm

Vqkkcqn
+ X0nckm;Xm0ll

+ o
q

nÞm

VqkkcqnX
n0ckm;Xm0ll, s5d

sv − «kdkkXnmckn;X
m0ll

= − kXn0cknl + o
q

VqkkXn0cqmckn;X
m0ll

+ o
q

VqkkX0mcqn
+ ckn;X

m0ll. s6d

We now employ the decoupling scheme already given in Ref.
15 that conserves the particle number and angular momen-
tum snÞm is assumedd:

kkcqn
+ X0nckm;Xm0ll . kcqn

+ X0nlkkckm;Xm0ll, s7d

kkcqnX
n0ckm;Xm0ll . kcqnX

n0lkkckm;Xm0ll, s8d

kkXn0cqmckn;X
m0ll . kcknX

n0lkkcqm;Xm0ll, s9d

kkX0mcqn
+ ckn;X

m0ll . kcqn
+ cknlkkX0m;Xm0ll. s10d

Note a sign difference in Eq.s9d with respect to Ref. 15. The
Green’s functionkkcqm;Xm0ll appearing here can again be
determined from its equation of motion,

kkcqm;Xm0ll =
Vq

v − «q
kkX0m;Xm0ll. s11d

This leads to the equation from which thef electron Green’s
function can be determined:

Fmsvd =

1 − nf +
nf

N
+ I1svd

v − « f − Dsvd + I2svd − DsvdI1svd
, s12d

with the sums over correlation functions,

I1svd = − o
k

nÞm

Vk

v − «k
kXn0cknl, s13d

I2svd = − o
kq

nÞm

VkVq

v − «k
kcqn

+ cknl, s14d

and the hybridization function

Dsvd = o
k

Vk
2

v − «k
. s15d

In the degenerate models we study in this paper, the sums
over n with nÞm simply lead to factors ofN−1. The sums
over k andq can be simplified further.

To that end, we replace the correlation functions by inte-
grals over the imaginary part of the corresponding Green’s
function,

kckn
+ cqnl = −

1

p
E dv8 fsv8dImkkcqn;ckn

+ ll. s16d

The conduction electron Green’s functionkkcqn;ckn
+ ll is de-

termined from its equation of motion,

kkcqn;ckn
+ ll =

dkq

v − «q
+

VkVq

sv − «kdsv − «qd
kkX0n;Xn0ll.

s17d

Now in order to simplify the sums in Eqs.s13d ands14d, we
employ the identity

1

sv − «dsv8 − «d
=

1

v8 − v
F 1

v − «
−

1

v8 − «
G . s18d

This allows us to identify occurrences of the hybridization
function s15d, and we find

I1svd =
N − 1

p
E dv8

fsv8d
v8 − v

fFm9 sv8dDsvd

− ImhFmsv8dDsv8djg , s19d

I2svd =
N − 1

p
E dv8

fsv8d
v8 − v

f− D9sv8d

+ DsvdImhFmsv8dDsv8dj − ImhFmsv8dDsv8d2jg .

s20d

Equationss12d together withs19d ands20d and the definition
of nf s4d form an integral equation forFmsvd that can be
solved iteratively. In order to compute the integrals of Eqs.
s19d and s20d we introduce the following real functions:

Amsvd = − fsvdImFmsvd,
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Bsvd = fsvdImDsvd,

Cmsvd = fsvdImhFmsvdDsvdj,

Dmsvd = fsvdImhFmsvdDsvd2j. s21d

Now the integrals read as

I1svd =
1

p
o
nÞm

FDsvdE dv8

p

Amsv8d
v − v8

+E dv8

p

Cmsv8d
v − v8

G ,

I2svd =
1

p
o
nÞm

FE dv8

p

Bsv8d
v − v8

− DsvdE dv8

p

Cmsv8d
v − v8

+E dv8

p

Dmsv8d
v − v8

G . s22d

Thus, the calculation of the integrals reduces to simple
evaluation of Kramers-Kronig integrals. The imaginary part
for example of the first such integral is −ipAmsv8d.

It turns out that this set of equations on the real frequency
axis is solved easily for the Anderson impurity model, but as
we add self-consistency conditions in order to solve more
complicated models in the DMFT approximation, conver-
gence depends strongly on a good initial guess of the solu-
tion. For this purpose, we write equations analogous to Eqs.
s12d, s19d, s20d, and s4d on the Matsubara axis. Matsubara
Green’s functions are much more smooth than their counter-
parts on the real frequency axis and thus converge more eas-
ily. Nevertheless, the calculation of the Green’s function on
the imaginary axis does not make the real axis calculation
redundant: First, the analytic continuation to the real axis is
only accurate for low frequencies due to a lack of high fre-
quency information in the Matsubara Green’s function. Sec-
ond, the dependence of the imaginary frequency grid on tem-
perature,

ivn = s2n + 1dpT, s23d

means that at high temperatures, the low frequency part of
the Green’s function is very badly resolved, while at very
low temperatures, an inordinate number of imaginary fre-
quencies is necessary to describe the Green’s function for all
frequencies for which it significantly differs from zero. This
means that from a practical point of view, the Matsubara
Green’s function is best calculated at an intermediate tem-
perature, providing via analytic continuation a sufficiently
accurate initial guess for the iterative solution of Eq.s12d on
the real axis. This problem of the Matsubara formulation is
not related to the well known difficulty in performing ana-
lytic continuation to the real axis.

All equations of motion are almost unchanged when we
go over to Matsubara frequencyivn, e.g., Eq.s17d becomes

kkckn;cqn
+ llivn

=
dkq

ivn − «q
+

VkVq

sivn − «kdsivn − «qd
kkX0n;Xn0llivn

.

s24d

Correlations have to be calculated as

kcqn
+ cknl = To

ivn

kkckn;cqn
+ llivn

eivn0+
, s25d

which replaces Eq.s16d for that purpose. In order to simplify
the equations, we employ the analog of Eq.s18d, namely

1

sivn − «kdsivn8 − «kd
=

1

ivn8 − ivn
H 1

ivn − «k
−

1

ivn8 − «k
J ,

s26d

and we identify occurrences of the hybridization function,

Dsivnd = o
k

Vk
2

ivn − «k
. s27d

This leads to the system of equations

Fmsivnd =

1 − nf +
nf

N
+ S1sivnd

ivn − « f − Dsivnd„1 + S1sivnd… + S2sivnd
,

s28d

with

S1sivnd = T o
lÞm

ivn8

Dsivn8d − Dsivnd
ivn8 − ivn

Flsivn8de
ivn80+

, s29d

S2sivnd = T o
lÞm

ivn8

Dsivn8d − Dsivnd
ivn8 − ivn

h1 + Dsivn8dFlsivn8dje
ivn80+

,

s30d

nf = NTo
ivn8

Fmsivn8de
ivn80+

. s31d

With the replacement

To
ivn8

Ksivn8de
ivn80+ → −

1

p
E dv8 fsv8dImKsv8d, s32d

we can easily recover Eqs.s19d ands20d from s29d ands30d.
It is important to note that good convergence of the self-
consistent solution of the system of equations depends cru-
cially on the proper treatment of the slowly decaying high
frequency tails of the addends of Eqs.s29d–s31d. A high fre-
quency expansion of these addends was performed to deter-
mine the coefficients of the terms proportional to 1/ivn and
1/sivnd2. These terms were subtracted from the sums, and
their value was determined analytically.

The solution of the Anderson impurity model according to
the closed system of Eqs.s12d, s14d, and s15d has been in-
vestigated in detail in Ref. 15 and in a slightly less general
version in Ref. 13. It was found that the solution shows the
emergence of a Kondo resonance at low temperature. The
temperature scaling differs from the exact result of Haldane16

by a factor of 2 in the exponent and in the prefactor. It was
shown by Luoet al.17 that by decoupling in a different way
in the case of a degeneracyN=2 the temperature scaling can
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even be improved. The intensity of the Kondo peak is below
the value that would be required by the Friedel sum rule.
This means that in contrast to methods like NCA that exceed
the unitary limit for some parameter ranges, no unphysical
self-energies are observed in the case of the decoupling ap-
proach.

A. Hubbard model

We now proceed to investigate the usefulness of the im-
purity solver detailed above in its application in the DMFT
context. Our application of the method to three lattice mod-
els is an exploratory study concentrating on a small number
of important properties only. It is not the intention of this
article to go into detail for each of the three models. We first
investigate the Hubbard model in order to study the quasi-
particle scaling of the Hubbard band with degeneracyN.

We consider the Hubbard Hamiltonian,

H = − o
i j s

tijcis
+ cjs − mo

is

cis
+ cis +

U

2 o
iss8

sÞs8

cis
+ ciscis8

+ cis8,

s33d

where the spin and orbital indexs runs from 1 toN. For this
model, we have to solve the AIM with the self-consistency
condition

Dsivnd = t2Goossivnd. s34d

For the derivation of this equation, see Appendix A.

B. Anderson lattice

We study the application of theU=` impurity solver to
the Anderson lattice in order to learn how this new approach
compares to the straightforward decoupling of the equations
of motion for the periodic Anderson model.15 We consider
the periodic Anderson Hamiltonian,

HPAM = − o
i j s

tij
c cis

+ cjs − o
i j s

tij
f f is

+ f js + «co
is

cis
+ cis + « fo

is

f is
+ f is

+ o
is

sViscis
+ f is + Vis

* f is
+ cisd +

U

2 o
iss8

sÞs8

f is
+ f isf is8

+ f is8.

s35d

In this case, the self-consistency condition for thef electron
Green’s function is

Gf
localsivnd =E d«r0s«dSivn + m − « f

0 − S fsivnd

−
Vs«d2

ivn + m − «
D−1

. s36d

Here, the self-energy is determined from the equation

G0
−1sivnd = Gf

−1sivnd + Ssivnd, s37d

and the Weiss functionG0sivnd is related to the hybridization
function Dsivnd by

G0
−1sivnd = ivn + m − « f

0 − Dsivnd. s38d

The derivation of these equations is contained in Appendix
B.

C. pd model

In order to study the Mott transition with theU=` impu-
rity solver described above, we consider the Hamiltonian19

H = − o
i j s

Vijfdis
+ pjs + pjs

+ disg + «po
js

pjs
+ pjs + «do

is

dis
+ dis

+ Udo
i

di↑
+ di↑di↓

+ di↓. s39d

This model, which we call apd model here, has been pro-
posed to study the physics of the Cu-O planes of the cuprates
for which the interaction strengthU<10 eV on the Cud
orbitals is much higher than the charge transfer gap ofEg
<2 eV. In this situation theU=` approximation is expected
to be very good as the physics of the problem is weakly
sensitive to the value ofU20 provided thatU is large enough.
The Hamiltonian s39d is similar to the Anderson lattice
Hamiltonian if the conduction electron dispersion is taken to
be a constant«k=«p and if thek dependence of the hybrid-
izationVk is retained. This changes the local conduction elec-
tron Green’s function:

Gd
localsivnd =E d«rpds«dSivn + m − «d − Sdsivnd

−
«2

ivn + m − «p
D−1

= zpE d«rpds«dszpzd − «2d−1,

Gp
localsivnd =E d«rpds«dSivn + m − «p

−
«2

ivn + m − «d − SdsivndD
−1

= zdE d«rpds«dszpzd − «2d−1, s40d

with the abbreviationszp= ivn+m−«p and zd= ivn+m−«d
−Sdsivnd. Here,rpds«d stands for the density of states asso-
ciated with the hybridizationVk. Noting that

E d«
rpds«d
x2 − «2 =

1

2x
FE d«

rpds«d
x − «

+E d«
rpds«d
x + «

G
=

1

2x
fD̃sxd − D̃s− xdg

=
D̃sxd

x
for symmetricrpds«d, s41d

we can writeGp
localsivnd andGd

localsivnd as Hilbert transforms:
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Gp
localsivnd =Îzd

zp
D̃sÎzpzdd ,

Gd
localsivnd =Îzp

zd
D̃sÎzpzdd . s42d

We use a semicircular form forrpds«d,

rpds«d =
1

2ptpd
2

Î4tpd
2 − «2, s43d

wheretpd is the strength of the hybridization betweenp and
d levels.

It is worth pointing out that this method reproduces an
important aspect of the exact solution of the DMFT equa-
tions within the context of thepd model. Namely, it produces
a first order phase transition between a metallic and an insu-
lating phase, which is manifested by the existence of two
DMFT solutions for the same range of parameters.

III. RESULTS

A. Hubbard model

First of all we test the performance of our impurity solver
by comparing it with the results of exact diagonalization
sEDd. For this purpose, we employ the code published ac-
companying the review of the DMFT method in Ref. 1,
modified to U=`. The Hubbard model is solved in the
DMFT approximation. The self-consistency condition for the
Hubbard model is realized by minimizing the function
fs«k,Vkd=onut2Gsivnd−okVk

2/ sivn−«kdu with respect to the
parameters«k and Vk. Here, the exact diagonalization has
been performed withNs=6 sites which are divided into one
site for the impurity and five sites for the bath. Thus, the
hybridization functionDsivnd is represented with five poles.
This leads to a finite number of poles instead of a smooth
function in the spectral function as well. Figure 1 shows the
comparison of the densities off electrons as a function of the
impurity position« f swhich is related to the chemical poten-
tial by m=−« fd. The comparison shows that at high tempera-
tureT=0.5, the results of exact diagonalization and EOM are
virtually indistinguishable while for a lower temperatureT
=0.03, the densities differ slightly for impurity positions be-
tween21 and 1.

In Fig. 2, we compare the imaginary parts of the Green’s
function for a density ofnf =0.84. The slight differences in
the nf versusm curves of Fig. 1 mean that this density is
achieved form=0.6 in the case of ED and form=0.53 in the
case of EOM. The imaginary parts of the Green’s function on
the Matsubara axis shown in the inset are very similar. Thus,
the main figure shows the more demanding comparison of
the densities of state. The continuous line represents the DOS
from the EOM method gained by analytic continuation in the
Padé approximation, while the long dashes stand for the
EOM result on the real axis. The dashed curve with the five
poles is the result of DMFT on the basis of exact diagonal-
ization. The figure shows that the distribution of spectral
weight between the Kondo peak around the Fermi level at

v=0 and the Hubbard band is similar in both methods, but
the EOM method leads to a better overall shape of the spec-
tral function. We conclude that the EOM method results
compare well with ED, giving us confidence that it is a use-
ful approximation. Even for this low number ofNs=6 sites,
the exact diagonalization requires an order of magnitude
more CPU time than the EOM method.

Figure 3 shows the carrier density as a function of the
impurity position « f. The impurity position corresponds to
the chemical potential, only with opposite signm=−« f. Due
to the infinite interaction, the maximum filling is one elec-
tron per site. In other words, the upper Hubbard band that
could hold a second electron at finiteU has been pushed to
infinite energy. While at low temperatureT=0.03 thenf ver-
susm curves at different degeneraciesN=2 to N=14 nearly

FIG. 1. Density of f electrons as a function of the chemical
potentialm=−« f for exact diagonalization and the equation of mo-
tion method in comparison. The energy unit is the half bandwidth
D. For the higher temperatureT=0.5, the two methods agree ex-
tremely well, while for the lower temperatureT=0.03, the exact
diagonalization gives slightly lower densities at the same chemical
potentialm=−« f. Exact diagonalization was performed with 6 sites,
and the Hubbard model was solved in the DMFT approximation.

FIG. 2. Spectral functionssmain figured and an imaginary part
of the Green’s functionsinsetd from exact diagonalization and the
equation of motion method in comparison. The temperature isT
=0.03, the density off electrons isnf =0.84 for both methods. The
two methods compare well, considering that the exact diagonaliza-
tion with 5 bath sites has only limited resolution on the real axis.
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coincidefsee Fig. 3sbdg, they differ considerably at high tem-
peratureT=0.5 fsee Fig. 3sadg.

In Fig. 4 we show examples of the spectral function for
degeneracies betweenN=2 andN=14 for high and low tem-
perature. While atT=0.5 the spectral function is nearly un-
structured, atT=0.003 a broad Hubbard band and a quasi-
particle resonance at zero frequencyv=0 can be
distinguished. The weight of the Hubbard band diminishes as
1/N as the degeneracyN increases while the intensity of the
Kondo peaks remains nearly constant. Note that the spectral
functions in Fig. 4 resulting from the DMFT self-consistency
contain no spurious side bands as those calculated by directly
decoupling the equations of motion produced by the Hub-
bard Hamiltonian.18 In our calculation, the imaginary part of
the Green’s function outside the Hubbard band and reso-
nance is exactly zero.

B. Anderson lattice

Figure 5 shows examples for the conduction electron and
the strongly correlatedf electron spectral functionssdashed
and full lines, respectivelyd. In Fig. 5sad, the hybridization
between the two bands is smallsV2=0.01d while in Fig. 5sbd
it is rather largesV2=0.2d. Correspondingly, the conduction
electron DOS shows only a small dip at the position of thef

band for a low value of the hybridization. Interestingly, we
find a Kondo resonance at the Fermi level in thef electron
DOS. This resonance was absent in the decoupling approach
to the periodic Anderson model of Ref. 15.

C. pd model

We investigate thepd model Hamiltonian, Eq.s39d, as a
function of the separationD0=«p−«d and of the hybridiza-
tion strengthtpd between the two bands. From the analysis in
Ref. 19 of the finiteU version of this model, we expect a
metal insulator transition to occur at a fixed densityntot=1 if
we vary the level separationD0 at a giventpd. Figure 6sad
shows the result of this calculation at a fixedtpd=1. The
temperature was taken to beT=0.01. For level separations
D0=0 and D0=0.5, the densityntot aroundntot=1 changes
smoothly as a function of chemical potential. But beginning
with D0=1.0, a charge transfer gapg1=msntot=1+d−msntot

=1−d begins to open up. Thus, the physics discussed in Ref.
19 for finite values ofU can be also found forU=`. The
critical value attpd=1 is D0=1. Note that theD0=4, U=8
result in Fig. 1 of Ref. 19 compares well with theD0=4, U
=` curve of this work’s Fig. 6sad. If we increase the hybrid-
ization strength totpd=4 fsee Fig. 6sbdg, we find that the

FIG. 3. Densitynf of f electrons as a function of the chemical
potentialm for the infiniteU Hubbard model. Energy is measured in
units of a half bandwidthD. sad At high temperatureT=0.5,nfs« fd
differs for different values of the degeneracyN. sbd At low tempera-
ture T=0.03, thenfs« fd for different N nearly coincide.

FIG. 4. Density of statesr fsvd of f electrons for the infiniteU
Hubbard model. The energy unit is the half bandwidthD. sad At
high temperatureT=0.5, there is no quasiparticle resonance atv
=0. sbd At low temperatureT=0.03, the quasiparticle resonance at
v=0 is clearly developed. The weight of the Hubbard band is pro-
portional to 1/N.

H. O. JESCHKE AND G. KOTLIAR PHYSICAL REVIEW B71, 085103s2005d

085103-6



critical D0 for the metal to charge transfer insulator increases
to D0<4. In Fig. 6sad, we also note the transition at a total
densityntot=2 from a metal at higher level separationD0 to a
band insulator with a gapg2=msntot=2+d−msntot=2−d. For
the higher value of the hybridization strengthtpd, the system
is a band insulator atntot=2 for all studied level separations
D0.

An important question in the metal to insulator transition
of Fig. 6 concerns the existence of a coexistence region. We
can show that such a coexistence is indeed found with our
method. Figure 7 shows spectral functions ford andp elec-
trons at a hybridization strengthtpd=1, a separationD0=«p
−«d=1 and a chemical potentialm−«d=0.3. The calculation
was performed for a temperature ofT=10−5, and care was
taken to resolve the sharp peak of the noninteracting Green’s
functionGpsvd at «p=0.5 with the help of a logarithmic grid.
The full line shows the converged result of a direct calcula-
tion at m−«d=0.3. A quasiparticle peak atv=0 for both the
correlated and the uncorrelated electrons makes this a metal-
lic solution. The dashed line was obtained by starting the
calculation in the insulating region atm−«d=0.5 and lower-
ing the chemical potential in steps of 0.01. Atm−«d=0.3, the
solution is still insulating as no quasiparticle peak has
formed.

IV. SUMMARY

A method to solve the Anderson impurity model with the
help of equations of motion and decoupling has been tested
for its suitability as an impurity solver in the framework of
dynamical mean field theory. The application to three lattice
models in infinite dimensions and for infinite interaction
strengthU shows very encouraging results. In the application
to the Hubbard model, we see a correct quasiparticle scaling
of the Hubbard band with respect to the degeneracy. In the
periodic Anderson model, we find a Kondo resonance which
is absent in a direct decoupling of the equations of motion.
This underlines the usefulness of the approach chosen here:
To use a decoupling scheme for the solution of the Anderson
impurity model which is then employed to solve lattice mod-
els in the DMFT approximation. Interestingly, the applica-
tion of our approach to thepd model yields a coexistence of
the insulating and metallic phases. The extension of theU
=` approach discussed here to finite values of the interaction
strengthU is possible and in preparation. The numerical ef-
ficiency of the method makes an application in an LDA
+DMFT context feasible.
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APPENDIX A: DMFT SELF-CONSISTENCY CONDITION
FOR THE HUBBARD MODEL

The partition function corresponding to the Hamiltonian
of Eq. s33d is

Z =E p
i

DcisDcise−S, sA1d

with the action

S=E
0

b

dto
is

cisstd
]

]t
cisstd +E

0

b

dtF− o
i j s

tijcisstdcjsstd

− mo
is

cisstdcisstd +
U

2 o
iss8

sÞs8

cisstdcisstdcis8stdcis8stdG ,

sA2d

where the Fermion operatorscis
+ , cis of the Hamiltonian have

been replaced by Grassmann variablescisstd, cisstd.
The cavity method now requires that we focus on one site

i =o and separate the Hamiltonians33d into three parts, one
relating to siteo only, one connecting this site to the lattice,
and one for the lattice with siteo removed,

H = Ho + Hc + Hsod, sA3d

Ho = − mo
s

cos
+ cos +

U

2 o
ss8

sÞs8

cos
+ coscos8

+ cos8, sA4d

Hc = − o
is

ftiocis
+ cos + toicos

+ cisg , sA5d

Hsod = − o
iÞojÞos

tijcis
+ cjs − m o

iÞos

cis
+ cis

+
U

2 o
iÞoss8
sÞs8

cis
+ ciscis8

+ cis8. sA6d

The three parts of the Hamiltonian correspond to the action
So of site o, the actionDS for the interaction between siteo

FIG. 7. The spectral function for thepd model Hamiltonians39d showing the coexistence of a metallic and an insulating phase. The
hybridization strength wastpd=1, thepd separationD0=1. sad andsbd show the correlatedd spectral function,scd andsdd the uncorrelated
p spectral function. In the case ofsad and scd, the solution was calculated directly for a chemical potentialm−«d=0.3 and the solution is
metallic due to the sharp Kondo resonance at the Fermi level. In the case ofsbd and sdd, the chemical potential was changed tom−«d

=0.3 in small steps, starting from an insulating solution. The resulting DOS is still insulating. Note that inscd andsdd the sharp peak of the
noninteracting DOS at«p=0.5 is not shown.
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and the lattice and the actionSsod of the lattice without siteo:

So =E
0

b

dtFo
s

cosstdS ]

]t
− mDcosstd

+
U

2 o
ss8

sÞs8

cosstdcosstdcos8stdcos8stdG , sA7d

DS= −E
0

b

dtFo
is

tiocisstdcosstd + toicosstdcisstdG ,

sA8d

Ssod =E
0

b

dtF o
iÞos

cisstdS ]

]t
− mDcisstd

− o
iÞojÞos

tijcisstdcjsstd

+
U

2 o
iÞoss8
sÞs8

cisstdcisstdcis8stdcis8stdG . sA9d

The aim is now to integrate out all lattice degrees of freedom
except those of siteo in order to find the effective dynamics
at siteo. In that process, the actionSo remains unchanged,
the terms ofDS are expanded in terms of the hoppingt
which becomes small with increasing dimension and aver-
aged with respect to the actionSsod. Defining DSstd via DS
=e0

bdtDSstd the partition function is

Z =E DcosDcose−SoE p
iÞo

DcisDcise−Ssod
e−e0

bdtDSstd.

sA10d

Now we can expand the last exponential function as

e−e0
bdtDSstd = 1 −E

0

b

dtDSstd

+
1

2!
E

0

b

dt1E
0

b

dt2DSst1dDSst2d − ¯ .

sA11d

Taking into account that in general an operator average with
respect to an actionS can be expressed as

kAlS=

E p
i

DcaDcae−SAfca,cag

E p
i

DcaDcae−S

= Zs
−1E p

i

DcaDcae−SAfca,cag, sA12d

we can consider the second functional integral insA10d to
average the terms of the expansionsA11d with respect to the
lattice actionSsod:

Z =E p
i

DcosDcose−SoZSsodH1 −E
0

b

dtkDSstdlSsod

+
1

2!
E

0

b

dt1E
0

b

dt2kDSst1dDSst2dlSsod − ¯J . sA13d

Here, the partition function of the lattice without siteo is
abbreviated as

ZSsod =E p
i

DcaDcae−Ssod
. sA14d

Now the terms insA13d with odd powers ofDS will average
to zero. For example,

kDSstdlSsod = o
is

tiokcisstdlSsodcosstd + toicosstdkcisstdlSsod = 0,

sA15d

because the averagek lSsod acts on all sites excepto. The next
average insA13d yields

kDSst1dDSst2dlSsod =KTtFo
is

tiocisst1dcosst1d + toicosst1dcisst1dG 3 Fo
js8

tjocjs8st2dcos8st2d + tojcos8st2dcjs8st2dGL
Ssod

= o
i j ss8

tiotojcosst1dkTtcisst1dcjs8st2dlSsodcos8st2d + o
i j ss8

toitjocosst1dkTtcisst1dcjs8st2dlSsodcos8st2d

= 2 o
i j ss8

tiotojcosst1dkTtcisst1dcjs8st2dlSsodcos8st2d

= 2o
i j s

tiotojcosst1dkTtcisst1dcjsst2dlSsodcosst2d

= − 2o
i j s

tiotojcosst1dGij s
sodst1 − t2dcosst2d. sA16d

DECOUPLING METHOD FOR DYNAMICAL MEAN-FIELD… PHYSICAL REVIEW B 71, 085103s2005d

085103-9



The imaginary time ordering operatorTt enters because
the path integral leads to imaginary time ordering.
Only terms with s=s8 contribute as we are considering
a paramagnetic state and thuskTtcisst1dcjs8st2dlSsod

=dss8kTtcisst1dcjsst2dlSsod. We have identified the average
with the cavity Green’s function Gij s

sodst1−t2d
=−kTtcisst1dcjs

+ st2dlSsod, i.e., the Green’s function of the Hub-
bard model without the siteo. Now we have for the partition
function,

Z =E p
s

DcosDcose−SoZSsodH1 −E
0

b

dt1E
0

b

dt2

3o
i j s

tiotojcosst1dcosst2dGij s
sodst1 − t2d + ¯J .

sA17d

We would like to write the bracketh j in sA17d again as an
exponential function in order to identify an effective action
Seff:

Z =E p
i

DcosDcose−Seff. sA18d

Noting that the next term in the expansion ofsA17d would
read as

E
0

b

dt1E
0

b

dt2E
0

b

dt3E
0

b

dt4

3o
i1i2j1j2s

cosst1dcosst3dcosst2dcosst4d

3 ti1oti2otoj1
toj2

Gi1i2j1j2s
sod st1t3,t2t4d, sA19d

we can write for the partition functionsA17d

Z =E p
i

DcosDcose−SoZSsodexp5− o
n=1

`

o
s
E

0

b

dt1¯E
0

b

dt2ncosst1d¯cosst2n−1dcosst2d¯cosst2nd

3 o
i1,…,in
j1,…,jn

ti1o¯tinotoj1
¯tojn

Gi1¯inj1¯ jns
sod st1¯t2n−1,t2¯t2nd6 . sA20d

All terms but the first in this sum overn turn out to be at
least of order 1/d so that they vanish in the limit of infinite
dimensiond=`. Thus, in this limit we find for the effective
action,

Seff = So + o
s
E

0

b

dt1E
0

b

dt2cosst1dcosst2d

3o
i j

tiotojGij s
sodst1 − t2d

=E
0

b

dtFo
s

cosstdS ]

]t
− mDcosstd

+
U

2 o
ss8

sÞs8

cosstdcosstdcos8stdcos8stdG
+ o

s
E

0

b

dt1E
0

b

dt2cosst1dcosst2do
i j

tiotojGij s
sodst1 − t2d,

sA21d

and introducing the Weiss field,

Gs
−1st1 − t2d = − S ]

]t1
− mDdt1t2

− o
i j

tiotojGij s
sodst1 − t2d,

sA22d

we finally get

Seff = − o
s
E

0

b

dt1E
0

b

dt2cosst1dGs
−1st1 − t2dcosst2d

+E
0

b

dt
U

2 o
ss8

sÞs8

cosstdcosstdcos8stdcos8std. sA23d

The equation

Gij s
sod = Gij s − GiosGoos

−1 Gojs sA24d

is needed to relate the cavity Green’s function to the Green’s
function of the latticeGij s. Going from imaginary time to
imaginary frequency and combining withsA24d, the Weiss
function sA22d reads as
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Gs
−1sivnd = ivn + m − o

i j

tiotojGij s
sodsivnd

= ivn + m − o
i j

tiotojfGij ssivnd

− GiossivndGoos
−1 sivndGojssivndg . sA25d

If we now go from real space tok space we can simplify this
equation. Introducing the Fourier transformGks via

Gij ssivnd = o
k

eikRijGkssivnd, sA26d

we find

o
i

tioGiossivnd = o
i

tioo
k

eikRioGkssivnd = o
k

«kGkssivnd,

o
i j

tiotojGij ssivnd = o
i j

tiotojo
k

eikRijGkssivnd

= o
k

o
i

tioeikRioo
j

toje
ikRojGkssivnd

= o
k

«k
2Gkssivnd. sA27d

In the general form of the Green’s functionGks
−1sivnd= ivn

+m−«k−Sssivnd we introduce the abbreviationj= ivn+m
−Sssivnd to getGks

−1sivnd=j−«k and determine the sums

o
k

«kGkssivnd = o
k

«k

j − «k

= o
k

«k − j + j

j − «k
= − 1 +o

k

j

j − «k

= − 1 +jo
k

Gkssivnd = − 1 +jGoossivnd,

o
k

«k
2Gkssivnd = o

k

«k
2

j − «k
= o

k

«ks«k − jd + «kj

j − «k

= o
k

«k + jo
k

«k

j − «k

= jf− 1 +jGoossivndg = − j + j2Goossivnd.

sA28d

With this, the Weiss functionsA25d becomes

Gs
−1sivnd = ivn + m − o

k

«k
2Gkssivnd

+ So
k

«kGkssivndD2
Goos

−1 sivnd

= ivn + m + j − j2Goossivnd + f− 1 +jGoossivndg

3f− Goos
−1 sivnd + jg = ivn + m − j + Goos

−1 sivnd

= Sssivnd + Goos
−1 sivnd. sA29d

This equationGoos
−1 sivnd=Gs

−1sivnd−Sssivnd is the Dyson
equation for the local Green’s function.

The effective actionsA23d can now be interpreted in
terms of the Anderson impurity model, i.e., the Anderson
impurity model gives rise to an action which becomes iden-
tical to sA23d if an additional self-consistency condition is
fulfilled. The Hamiltonian for the Anderson impurity model
is

H = o
ks

«kcks
+ cks + o

ks

sVkcks
+ fs + Vk

* fs
+cksd − o

s

mfs
+ fs

+
U

2 o
ss8

sÞs8

fs
+ fsfs8

+ fs8, sA30d

wheres runs from 1 to the degeneracyN. The action corre-
sponding to this Hamiltonian will consist of a purely local
part So concerning only thef electrons,

So =E
0

b

dtFo
s

fsstdS ]

]t
− mD fsstd

+
U

2 o
ss8

sÞs8

fsstdfsstdfs8stdfs8stdG , sA31d

and a part involving conduction band electrons that can be
integrated out

S= So +E
0

b

dto
ks
FcksstdS ]

]t
+ «kDcksstd + Vkcksstdfsstd

+ Vk
* fsstdcksstdG . sA32d

Now the partition function for the HamiltoniansA30d is

Z =E DfsDfsE p
i

DcisDcise−S

=E DfsDfse−SoE p
i

DcisDcisexpHE
0

b

dto
ks
Fcksstd

3S ]

]t
+ «kDcksstd + Vkcksstdfsstd + Vk

* fsstdcksstdGJ
=E DfsDfse−Sop

k

detS ]

]t
+ «kD

3 expHo
ks
E

0

b

dt1E
0

b

dt2fsst1dVk
*Vk

3S ]

]t1
+ «kD−1

dt1t2
fsst2dJ . sA33d

In the last step, the terms involvingf electronsVk
* fsstd and

Vkfsstd were taken as source terms, which makes the term in
the exponent a Gaussian integral that can be evaluated di-
rectly. The determinant constitutes a constant factor in the
partition function that does not concern us here. We are left
with an action for thef electrons that reads as
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Sf =E
0

b

dt1E
0

b

dt2o
s

fsst1dFS ]

]t1
− mDdt1t2

− o
k

uVku2S ]

]t1
+ «kD−1

dt1t2G fsst2d

+E
0

b

dt
U

2 o
ss8

sÞs8

fsstdfsstdfs8stdfs8std. sA34d

If we now compare this to the effective action of the Hub-
bard modelsA23d, we see that they are identical if we require
that the Weiss functionGst1−t2d fulfills the condition

G−1st1 − t2d = − S ]

]t1
− mDdt1t2

+ o
k

uVku2S ]

]t1
+ «kD−1

dt1t2
.

sA35d

Going from imaginary time to imaginary frequency, this
equation reads as

G−1sivnd = ivn + m − o
k

uVku2

ivn − «k
. sA36d

Here we can identify the usual definition of the hybridization
function Dsivnd in the Anderson impurity model,

Dsivnd = o
k

uVku2

ivn − «k
. sA37d

If we now equate Weiss functionssA29d andsA36d, we find
the DMFT self-consistency condition in terms of a prescrip-
tion for Dsivnd:

Dsivnd = ivn + m − Sssivnd − Goos
−1 sivnd. sA38d

On the Bethe lattice and with a half bandwidth ofD=2t, we
have a noninteracting density of states,

r0s«d =
1

2pt2
Î4t2 − «2, sA39d

and thus we can write for the local Green’s functionswith
j= ivn+m−Sssivndd,

Goossivnd = o
k

Gksivnd = o
k

1

j − «k
=E d«

r0s«d
j − «

=
1

2pt2
E

−2t

2t

d«
Î4t2 − «2

j − «

=
1

2t2
fj − sgnsRejdÎj2 − 4t2g. sA40d

From this we gain the expression

t2Goossivnd − j + Goos
−1 sivnd = 0, sA41d

which combined with Eq.sA38d leads to a simplified form of
the self-consistency condition:

Dsivnd = t2Goossivnd. sA42d

APPENDIX B: DMFT SELF-CONSISTENCY CONDITION
FOR THE ANDERSON LATTICE

We again focus on one sitei =o and split the Hamiltonian
into three parts:

HPAM = Ho + Hc + Hsod, sB1d

Ho = «co
s

cos
+ cos + « fo

s

fos
+ fos + o

s

sVoscos
+ fos + Vos

* fos
+ cosd

+
U

2 o
ss8

sÞs8

fos
+ fosfos8

+ fos8, sB2d

Hc = − o
is

ftio
c cis

+ cos + toi
c cos

+ cisg, sB3d

Hsod = − o
iÞojÞos

tij
c cis

+ cjs + «c o
iÞos

cis
+ cis + « f o

iÞos

f is
+ f is

+ o
iÞos

sViscis
+ f is + Vis

* f is
+ cisd +

U

2 o
iÞoss8
sÞs8

f is
+ f isf is8

+ f is8;

sB4d

Hc has the same form as in the Hubbard model, but the local
part Ho is more complicated as it contains two species of
electrons, conduction andf electrons. Nevertheless, we can
proceed completely along the lines detailed for the Hubbard
model above, expanding the actionDS arising from Hc in
order to arrive at an effective action for siteo. In this case we
have

So =E
0

b

dtFo
s

fsstdS ]

]t
+ « fD fsstd

+
U

2 o
ss8

sÞs8

fosstdfosstdfos8stdfos8std

+ o
s

cosstdS ]

]t
+ «cDcosstd + o

s

(Voscosstdfosstd

+ Vos
* fosstdcosstd)G sB5d

and

Seff = So +E
0

b

dt1E
0

b

dt2cosst1dcosst2do
i j s

tiotojGij s
sodst1 − t2d.

sB6d

In the d→` limit, the Green’s function becomes

G−1sivn,kd = Sivn + m − « f
0 − S fsivnd Vk

Vk ivn + m − «k
D .

sB7d

Inverting the matrix according to
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M = SA B

B C
D { M−1 =

1

detM
S C − B

− B A
D , sB8d

we find

Gsivn,kd =
1

fivn + m − « f
0 − S fsivndgsivn + m − «kd − Vk

2

3 Sivn + m − «k − Vk

− Vk ivn + m − « f
0 − S fsivnd

D .

sB9d

Thus, we find for thef electron Green’s function,

Gfsivn,kd = Sivn + m − « f
0 − S fsivnd −

Vk
2

ivn + m − «k
D−1

,

sB10d

and for the conduction band Green’s function,

Gcsivn,kd = Sivn + m − «k −
Vk

2

ivn + m − « f
0 − S fsivnd

D−1

.

sB11d

We get the local propagators asGfsR=0,ivnd
=okGfsivn,kdeiksR=0d by summation overk:

Gf
localsivnd = o

k
Gfsivn,kd =E d«r0s«dSivn + m − « f

0

− S fsivnd −
Vs«d2

ivn + m − «
D−1

,

Gc
localsivnd =E d«r0s«dSivn + m − «

−
Vs«d2

ivn + m − « f
0 − S fsivndD

−1

. sB12d

For computational purposes it is useful to note that for the
case of an energy independentVs«d;V, Gc

localsivnd can be

written as a Hilbert transformD̃szd=e−`
` d«Ds«d / (z−«):

Gc
localsivnd = D̃Sivn + m −

V2

ivn + m − « f
0 − S fsivndD .

sB13d

Rewriting Gf
localsivnd, we can likewise reduce the energy in-

tegral to the calculation of a Hilbert transform:

Gf
localsivnd =E d«r0s«d5 1

ivn + m − « f
0 − S fsivnd

+
V2

fivn + m − « f
0 − S fsivndg2

3
1

ivn + m − « −
V2

ivn + m − « f
0 − S fsivnd

6 ,

sB14d

and with Eq.sB13d,

Gf
localsivnd =

1

ivn + m − « f
0 − S fsivnd

+
V2

fivn + m − « f
0 − S fsivndg2Gc

localsivnd.

sB15d

If we now assume a semicircular DOSDs«d
=s1/2pt2dÎ4t2−«2 for the hybridizationVk we can explicitly
write for the Hilbert transform,

D̃szd =
1

2pt2
E

−2t

2t

d«
Î4t2 − «2

z − «
=

1

2t2
fz − sgnsRezdÎz2 − 4t2g.

sB16d

Thus, on the Bethe lattice the self-consistency condition can
be calculated without an integral over energies. We also need
the Dyson equation,

G0
−1sivnd = Gf

−1sivnd + Ssivnd. sB17d

From the high frequency limit of this equation we can find
the form of the Weiss functionG0

−1sivnd by comparing the
terms of the expansion order by order. Expanding Eq.sB12d
we find

Gfsivnd <
1

ivn
+ f« f

0 − m + S fsivndgS 1

ivn
D2

for ivn → `.

sB18d

Expanding the inverse, we find

Gf
−1sivnd < ivn + m − « f

0 − S fsivnd for ivn → `.

sB19d

Thus, we find from Eq.sB17d the high frequency form of the
Weiss function:

G0
−1sivnd < ivn + m − « f

0. sB20d

The hybridization functionDsivnd contains what we have
neglected in the high frequency expansion:

G0
−1sivnd = ivn + m − « f

0 − Dsivnd. sB21d
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