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Two magnetization plateaus in the kagome fluoride Cs2LiTi3F12
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We synthesized a kagome fluoride Cs2LiTi3F12 with S = 1/2 spins, and studied magnetic properties of
the compound. The temperature dependence of the magnetic susceptibility indicates that it has dominant
antiferromagnetic interactions and that it has no magnetic order down to 2 K. We found two magnetization
plateaus in its magnetization process approximately at 1/3 and 0.8 μB per Ti. The monoclinic crystal structure
gives four inequivalent nearest-neighbor exchange interactions. Our density functional theory calculations
suggest that three of them are antiferromagnetic and one of them is weakly ferromagnetic, resulting in a magnetic
system composed of antiferromagnetically coupled linear chains and � chains. This explains the observed
suppression of magnetic order. Numerical diagonalization gives a magnetization curve in good agreement with
the experimental results.
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I. INTRODUCTION

Quantum Heisenberg spin systems on a kagome lattice
have attracted much attention from both theoretical and exper-
imental viewpoints. In the last decade and a half, a number of
kagome antiferromagnets with S = 1/2 have been extensively
studied [1]. Much of this research is driven by the desire to
realize highly frustrated Hamiltonians where strong quantum
effects lead to an exotic state of matter, the quantum spin
liquid [2]. Most S = 1/2 kagome antiferromagnets are Cu2+

based materials, which include Cu containing minerals, such
as herbertsmithite [3], vesignieite [4,5], kapellasite [6], cen-
tennialite [7], and Cu based fluorides Cs2T Cu3F12 (T = Ti,
Zr, Hf, Sn) [8]. However, the Cu2+ ion has relatively large
spin-orbit coupling, and thus a large Dzyaloshinsky-Moriya
interaction [9]. In the context of the search for spin liquids,
this is undesirable as it may induce magnetic ordering.

Recently, we found a new series of kagome fluorides
A2BM3F12 (A, B = alkali metal ion, M = Ti, V, and Cr)
[10–12]. Among them, the Ti compounds have spin S =
1/2. Compared to the S = 1/2 magnetic ion Cu2+, Ti3+ has
much smaller spin-orbit coupling. We have already reported
the crystal structure and magnetic properties of the three
Ti3+ kagome compounds Rb2NaTi3F12, Cs2NaTi3F12, and
Cs2KTi3F12 [10]. Owing to lattice distortion from rhombo-
hedral to monoclinic, they have a slightly distorted kagome
lattice. We revealed that the magnetic states of kagome an-
tiferromagnets strongly depend on lattice distortion. Indeed,
our theoretical study clarified that the lattice distortions makes
the kagome lattice magnetically anisotropic [13].

In this paper we report the crystal structure and magnetic
properties of the new kagome magnet Cs2LiTi3F12 which is

a member of the above-mentioned A2BTi3F12 family. This
compound has a slightly distorted kagome lattice of Ti3+.
Since the crystal structure of Cs2LiTi3F12 is qualitatively the
same as other A2BTi3F12, we can use the new material to
systematically study the effect of lattice distortion on the
magnetism of S = 1/2 kagome antiferromagnets. The mea-
sured magnetic properties of Cs2LiTi3F12 are similar to those
of Cs2KTi3F12; therefore, it comes as a surprise that the
magnetic models are different between these two. Moreover,
Cs2LiTi3F12 has smaller antiferromagnetic interactions than
the previously studied A2BTi3F12, allowing us to study high
field magnetism. In high fields, Cs2LiTi3F12 shows not only
the 1/3 magnetic plateau but also a magnetic plateau with
a larger magnetization. We discuss details of the magnetic
properties of Cs2LiTi3F12.

II. METHODS

Polycrystalline samples of Cs2LiTi3F12 were synthesized
with a solution method under N2 atmosphere. Single crystals
of Cs2LiTi3F12 were grown with a flux method using alkali
metal chlorides in a Ni crucible under Ar atmosphere. A poly-
crystalline sample of a nonmagnetic isostructural compound
Cs2KGa3F12 was prepared with a solid state reaction in a Cu
tube under Ar atmosphere.

Powder x-ray diffraction measurements were performed at
room temperature using Miniflex600 (Rigaku) with a Cu Kα

source. X-ray diffraction data of a single crystal with a typical
size of 90 × 80 × 30 μm3 were obtained using a Rigaku
R-AXIS RAPID-S diffractometer with Mo Kα radiation. The
sample was cooled down to approximately 150 K using a
nitrogen-gas-flow-type refrigerator. The structural parameters
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including anisotropic displacement parameters were refined
using a full matrix least-squares method with the SHELXL-97
software [14].

Polycrystalline samples were used for magnetic suscepti-
bility and magnetization measurements, and one single crys-
tal was used for heat capacity measurements. DC magne-
tization was measured in a temperature range of 2–300 K
using a superconducting quantum interference device mag-
netometer (Quantum Design MPMS-XL) in the Research
Center for Low Temperature and Materials Sciences, Kyoto
University. Magnetization processes up to 75 T were mea-
sured using an induction method with a multilayer pulsed
magnet at the International MegaGauss Science Laboratory
of the Institute for Solid State Physics, the University of
Tokyo. Heat capacity measurements were performed us-
ing a commercial relaxation calorimeter (Quantum Design
PPMS-14LHS).

To understand our experimental observations, we carried
out a two-step calculation. The first step is the determination
of the electronic structure and magnetic interaction param-
eters of Cs2LiTi3F12 using density functional theory (DFT)
calculations with the all electron full potential local orbital
(FPLO) [15] basis and the generalized gradient approximation
(GGA) [16] exchange correlation functional. We account for
strong electronic correlations on the Ti3+ ions using the
GGA+U [17] correction. The Hunds rule coupling for Ti 3d
was fixed at JH = 0.64 eV [18]. We used an energy mapping
technique to determine the most important exchange interac-
tions in Cs2LiTi3F12 [19–21]. By lowering the symmetry of
Cs2LiTi3F12 to P1, all six Ti3+ ions in one unit cell become
inequivalent, and 15 collinear spin configurations with differ-
ent total energies can be created. We fit these energies against
the Heisenberg Hamiltonian written as H = ∑

i< j Ji jSi · S j

without double counting of bonds. This calculation allows us
to resolve all “nearest-neighbor” exchange couplings in the
kagome plane.

The second step of our calculation is numerical diago-
nalization of finite-size clusters with Heisenberg interactions
determined from the DFT calculations. Our numerical diago-
nalizations are carried out based on the Lanczos and/or House-
holder algorithms in the subspace characterized by

∑
j Sz

j =
Mz, where the z axis is taken as the quantized axis of each S =
1/2 spin operator S j at site j. Our numerical diagonalizations
provide us with the lowest energy of the Heisenberg Hamilto-
nian with the number of sites N in the subspace belonging to
Mz. The energy is denoted by E (N, Mz ). To obtain the steplike
magnetization process when the Zeeman term −2μBH

∑
j Sz

j
is added to H, we use the relation 2μBH = E (N, Mz + 1) −
E (N, Mz ) which determines the magnetic field H for the
occurrence of the magnetization increase from Mz to Mz + 1.
Note here that the isotropy of the system is assumed and
that the saturation magnetization is given by NS. Therefore,
the normalized magnetization per magnetic site is given by
M = Mz/(NS), which corresponds to the magnetization per
Ti site in units of μB. Some of the Lanczos diagonalizations
were carried out using an MPI-parallelized code that was
originally developed in the study of Haldane gaps [22]. The
usefulness of our program was confirmed in various large-
scale parallelized calculations [23–35]. We carried out our
diagonalizations of the systems with N = 24, 30, and 36. The

TABLE I. Atomic coordinates and isotropic displacement pa-
rameters of Cs2LiTi3F12 at 150 K. The space group is P21/m, and
the structural parameters are a = 12.877(6) Å, b = 7.594(5) Å,
c = 7.162(6) Å, β = 125.30(4)◦, and Z = 2. The residual indices
are R = 0.0392 and ωR = 0.1025. The numbers in parentheses are
standard deviations in the last significant figures.

Atom x y z U (Å2)

Cs1 0.61894(4) 0.75 0.61986(6) 0.02070(14)
Cs2 0.13016(3) 0.25 0.62174(6) 0.01798(14)
Li1 0.7311(11) 0.25 0.5117(19) 0.026(2)
Ti1 0 0 0 0.0113(2)
Ti2 0.5 0 0 0.0101(2)
Ti3 0.76963(9) 0.25 0.05607(18) 0.0106(2)
F1 0.0222(5) 0.25 0.9397(8) 0.0310(10)
F2 0.5909(2) 0.4344(3) 0.3107(4) 0.0170(5)
F3 0.0981(2) 0.9336(3) 0.8669(4) 0.0164(5)
F4 0.1525(3) 0.0164(4) 0.2946(5) 0.0291(6)
F5 0.5631(3) 0.75 0.1001(6) 0.0170(7)
F6 0.3477(2) 0.5467(3) 0.0046(4) 0.0173(5)
F7 0.1755(3) 0.75 0.6323(6) 0.0187(7)
F8 0.3002(4) 0.75 0.2573(6) 0.0194(7)

shapes of the finite-size clusters are taken to be the same ones
as were used in the previous study [13].

III. RESULTS AND DISCUSSION

By using a solution method, we succeeded in synthesizing
polycrystalline samples of Cs2LiTi3F12. Powder x-ray
diffraction measurements revealed that Cs2LiTi3F12 has
a monoclinic structure. In addition, we obtained brown
crystals of Cs2LiTi3F12 with a typical size of 2 × 2 × 2 mm3.
However, we found that large crystals are composed of several
domains, which is likely due to monoclinic deformation with
decreasing temperature. Single crystal x-ray diffraction
measurement revealed details of the crystal structure, as
summarized in Table I. No disorder of the constituent ions
is observed. This structure is qualitatively the same as that
previously reported for A2BTi3F12 compounds [10], and it
can be regarded as an ordered structure of the cubic modified
pyrochlore AM2F6 [36]. Ordering of Li+ and Ti3+ in the
pyrochlore lattice of M results in formation of a kagome
lattice of Ti3+. Thus, this structure consists of kagome
layers which are made up of corner-sharing TiF6 octahedra,
separated by nonmagnetic Cs+ ions and Li+ ions. Moreover,
TiF6 octahedra are compressed along axes which point out of
the kagome plane, and this distortion leads to a small lifting
of the degeneracy between the three t2g orbitals. Therefore,
the single 3d electron of Ti3+ occupies the 3dxy orbitals which
are almost parallel to the kagome plane.

Reflecting the monoclinic distortion, Cs2LiTi3F12 has three
crystallographically different Ti sites. Both Ti1 and Ti2 form
one-dimensional (1D) chains along the b axis and the chains
are bridged by Ti3. Therefore, there are four inequivalent
exchange interactions. The Ti-Ti distances and the Ti-F-Ti
bond angles are within the range of 3.734–3.797 Å and
134.2◦–142.7◦, respectively. These ranges are slightly larger
than those of other A2BTi3F12 compounds. The large distances
between two Ti ions of approximately 3.7 Å indicate that
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FIG. 1. Temperature dependence of the magnetic susceptibility
χ and of the inverse of the magnetic susceptibility χ−1 (right scale).
The black dashed line indicates the result of the Curie-Weiss fit. The
inset shows the magnetic field dependence at low temperatures.

direct exchange interactions between two Ti are negligibly
small. Thus, the dominant interactions are superexchange
interactions. The obtained Ti-F-Ti bond angles are much
larger than 90◦ which leads to the expectation that the
magnetic exchanges between nearest neighbor Ti ions are
antiferromagnetic.

The temperature dependence of the magnetic susceptibility
χ and of the inverse susceptibility are shown in Fig. 1. No
magnetic ordering is observed down to 2 K. At high tem-
peratures, the χ−1-T curve is almost linear and is well fitted
using the Curie-Weiss law χ = C/(T − θCW), where C is the
Curie constant and θCW is the Curie-Weiss temperature. The
fitting gives C = 0.380 emu K/Ti mol, and θCW = −29.8 K.
The Curie constant gives an effective Bohr magneton number
peff = 1.74, which is in good agreement with the theoretical
value of 1.73 for S = 1/2 and g = 2. The negative value of the
Curie-Weiss temperature indicates that the dominant magnetic
interactions are antiferromagnetic, as expected from Ti-F-Ti
bond angles. According to mean-field theory, the Curie-Weiss
temperature is given by θCW = −nJS(S + 1)/3kB, where n is
the number of nearest neighbor spins, J is the nearest neighbor
interaction, and kB is Boltzmann constant. Using n = 4 for
kagome lattice, we obtained an average nearest neighbor ex-
change coupling J = 29.8 K. The value of J for Cs2LiTi3F12

is the smallest among four A2BTi3F12 compounds. Those of
Rb2NaTi3F12, Cs2NaTi3F12, and Cs2KTi3F12 are 43, 44, and
47 K, respectively [10].

In the low temperature region, χ -T shows a broad max-
imum approximately at 12 K � J/3, which implies short
range order effects [37]. This behavior is expected in low
dimensional (both one- and two-dimensional) systems where
magnetic order is absent. In our previous study, χ -T curves of
A2BTi3F12 strongly depend on the distortion of the kagome
lattice. Among them, a broad maximum at T � J/3 was
observed also in χ of Cs2KTi3F12, which has the smallest
distortion and arguably the most frustrated Hamiltonian of

0 20 40 60 80
0

1

2

3

4

5

6

7

T  (K)

S
M

/T
 (

J/
K

 T
i−

m
ol

)

Cs2LiTi3F12

0 T

14 T

0 2 4 6 8 10
0.0

0.1

0.2

0.3

T  (K)

C
/T

 (
J/

K
2 T

i−
m

ol
)

Cs2LiTi3F12

Cs2KGa3F12

14 T

12

10

8
4

0 T

FIG. 2. Magnetic entropy of Cs2LiTi3F12 up to 80 K. The inset
shows the heat capacity divided by temperature under various mag-
netic fields. The data for nonmagnetic Cs2KGa3F12 are also plotted
to show the lattice contribution.

the three compounds [10,13]. A theoretical study proposed
that the susceptibility of the S = 1/2 kagome antiferromagnet
exhibits a broad maximum at T ∼ J/6 [38]. The difference
between the theory and experiment is considered to arise
from the distortion of the kagome lattice, which is similar
to Rb2SnCu3F12 [39]. The small upturn of the susceptibility
measured under 0.1 T below 4 K is due to magnetic impurities,
because it is suppressed under 5 T. The amount of magnetic
impurity that causes an upturn at low temperatures is evalu-
ated to be approximately 1% from the Curie constant obtained
by fitting the χ -T curve in this region.

To investigate the details of the magnetic states of S = 1/2
Cs2LiTi3F12, we measured the temperature dependence of the
heat capacity C under several magnetic fields using a rela-
tively large crystal grown with the flux method. We applied
the magnetic field along the [111] direction of the crystal in
the cubic indices. The heat capacity divided by temperature
C/T is plotted in the inset of Fig. 2. Under zero field, the
absence of λ-like anomalies indicates no long range magnetic
ordering down to 0.5 K. The C/T -T curves show the magnetic
field H dependence below 12 K. The temperature of 12 K
corresponds to the temperature where the χ -T curve shows
a broad maximum indicating short range magnetic ordering.
Moreover, each C/T curve shows a broad peak at Tmax, and
Tmax decreases with increasing H . This behavior is likely due
to formation of short range magnetic order which is restrained
by the magnetic field. This behavior is very similar to that of
Cs2KTi3F12.

By subtracting the lattice contribution and integrating C/T ,
we evaluated the magnetic entropy SM. The calculated SM

gradually increases with increasing temperature, and reaches
5 J/K approximately at −θCW, and then saturates above 80 K.
The magnetic entropy at 80 K is slightly larger than the theo-
retical value R ln 2 = 5.76 J/K for S = 1/2. This discrepancy
is likely due to errors of specific heat and lattice contribution.
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TABLE II. Nearest-neighbor intersite Ti-Ti distances and labels
for exchange couplings in Cs2LiTi3F12. Two couplings J3a and J3b

correspond to the same distance but connect two symmetry inequiv-
alent Ti sites. Note that J5 and J10 correspond to interlayer couplings.

d (Å) Ti1 Ti2 Ti3

Ti1 3.7970 J3b JB 6.2814 J5 3.7339 J1 JD

Ti2 6.2814 J5 3.7970 J3a JA 3.7695 J2 JC

Ti3 3.7339 J1 JD 3.7695 J2 JC 6.8155 J10

Using the experimentally obtained crystal structure and
θCW, we determined the exchange couplings. As mentioned
before, the distorted kagome lattice has three Ti sites; the 1D
Ti1 chain and Ti2 chain are bridged by Ti3. And hence, it has
four “nearest-neighbor” exchange couplings. Here we use two
kinds of labels for the exchange couplings, which are summa-
rized in Table II. One kind of labels Jn are couplings labeled
according to the physical structure, ordered by increasing
Ti-Ti distance as shown in Table II. As there are two identical
distances Ti1-Ti1 and Ti2-Ti2 along the 1D chains, which
however are symmetry inequivalent and do not have the same
exchange, they are called J3a, J3b. The other kind of labels JA

to JD are related to the model for the distorted kagome lattice;
JA and JB are couplings along the one-dimensional chains, and
JC and JD are those in the zigzag chains bridging JA and JB

chains, respectively. Note that JA is always assigned to be the
largest 1D chain coupling. The exchanges are visualized in
Fig. 3. We can determine the relevant value of the interaction
strength U by demanding that the Curie-Weiss temperature
calculated as θCW = − 2

3 S(S + 1)[ 2
3 J1 + 2

3 J2 + 1
3 J3a + 1

3 J3b +
2
3 J5 + 1

3 J10] match the experimentally determined value. The
Heisenberg Hamiltonian parameters of Cs2LiTi3F12 obtained
by energy mapping are shown in Fig. 3 and in Table III
for seven values of the interaction strength U . The value
U = 2.4 eV required to match the experimental value of
θCW is reasonable for Ti3+ and agrees well with the values
that describe the magnetic exchange of the sister compounds
RbNaTi3F12, CsNaTi3F12, and CsKTi3F12 [13]. The selected
interlayer couplings J5 and J10 are very small and will be
neglected in the further discussion. The obtained parameters
are shown in Table IV.

Interestingly, the model we obtain for Cs2LiTi3F12 is quite
different from those for the other known compounds. It is
characterized by strong antiferromagnetic spin chains JA. This

FIG. 3. Exchange couplings of Cs2LiTi3F12 determined by en-
ergy mapping. (Top) Seven sets of couplings determined from
GGA+U calculations at different interaction strengths U . The gray
line marks the interactions, found by interpolation, that match the
experimental Curie-Weiss temperature θCW = −29.8 K. (Bottom)
Visualization of the exchange strength in the Ti3+ kagome lattice—
the bond cross-sectional areas are proportional to the size of the
couplings. 1D Ti1 chains and Ti2 chains are formed through JB and
JA, respectively. These chains are bridged by Ti3 atoms through JD

and JC, respectively.

is coupled to the kagome lattice environment by ferromagnetic
couplings JC with a strength |JC/JA| = 0.104. Two thirds of
the Ti3+ ions in the plane form anisotropic � chains, with
a ratio JD/JB = 2.46. Our previous study clarified exchange
couplings for other A2BTi3F12 fluorides [13]; Rb2NaTi3F12

has very small JD and it consists of antiferromagnetic spin
chains with JB and anisotropic � chains with JC/JA = 0.292;
Cs2NaTi3F12 has relatively small JC and it is considered

TABLE III. Exchange couplings of Cs2LiTi3F12 calculated within GGA+U at JH = 0.64 eV and 8 × 8 × 8 k points. The line in bold is
obtained by requiring that the set of couplings yield the experimental Curie-Weiss temperature θCW = −29.8 K.

U (eV) J1 = JD (K) J2 = JC (K) J3a = JA (K) J3b = JB (K) J5 (K) J10 (K) θCW (K)

2.0 46.9(1) −11.3(1) 96.8(2) 20.7(2) −0.1(1) 0.9(2) −31.6
2.4 44.8(1) −9.3(1) 89.1(2) 18.2(2) −0.1(1) 0.7(1) −29.8
2.5 44.2(1) −9.0(1) 87.3(1) 17.7(1) −0.1(1) 0.6(1) −29.3
3.0 41.1(1) −7.6(1) 78.7(1) 15.3(1) −0.0(1) 0.4(1) −26.9
3.5 38.0(1) −6.7(1) 71.1(1) 13.2(1) −0.0(1) 0.2(1) −24.5
4.0 34.9(1) −6.0(1) 64.1(1) 11.2(1) 0.0(1) 0.1(1) −22.2
4.5 31.7(1) −5.6(1) 57.6(1) 9.3(1) 0.0(1) 0.1(1) −19.9
5.0 28.5(1) −5.4(1) 51.4(1) 7.3(1) 0.1(1) 0.0(2) −17.5
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TABLE IV. Exchange couplings for Cs2LiTi3F12 determined by
energy mapping, using the GGA+U exchange correlation functional
with U values that reproduce the experimental Curie-Weiss temper-
atures θCW = −29.8 K. See Fig. 3 for the assignment of JA, JB, JC,
and JD.

Material JA (K) JB/JA JC/JA JD/JA

Cs2LiTi3F12 89.1 0.204 −0.104 0.503

to consist of antiferromagnetic spin chains with JA and
nearly isotropic � chains with JD/JB = 0.967; Cs2KTi3F12

has almost the same JB, JC, JD. Although the temperature
dependence of χ for Cs2LiTi3F12 is very similar to that of
Cs2KTi3F12, the models are completely different.

Based on the model Hamiltonian, we can develop an
approximate expectation for the magnetization process. As the
overall strength of JD and JB couplings is 0.503 and 0.204 of
JA, respectively, the saturation of the � chain is expected to be
reached while the JA spin chain shows a slow linear increase
of magnetization [40]. At these low fields, the � chain will
exhibit a 1/2 magnetization plateau [41] which results in a 1/3
magnetization plateau of the full system as it affects only two
thirds of the Ti3+ ions. The 1/3 magnetization plateau should
be offset by a small, slightly increasing contribution from the
JA antiferromagnetic spin chain. Due to the large anisotropy,
the � chain should show a jump to full saturation [41].

Now, let us investigate the behavior of the magnetization
process of Cs2LiTi3F12 through both experiment and calcula-
tion, results of which are shown in Fig. 4. We experimentally
measured the magnetization process up to 75 T at 1.3 and
4.2 K. First, let us observe the characteristic behavior of our
experiment based on the lower-temperature measurement. By
increasing H from 0 T, M starts to increase with a finite
slope. Around H ∼ 7 T, there appears an inflection point of
M ∼ 0.04 μB per Ti. The inflection point will be discussed
in comparison with our numerical-diagonalization result. At
about 15 T, M increases with a considerable gradient. This
corresponds to the fact that the broad peak in C/T moves to
almost 0 K at 14 T. At around H ∼ 36 T, another inflection
point appears at M ∼ 0.37 μB. There is a possibility that the
inflection point is related to the 1/3 magnetization plateau
behavior that was mentioned in the discussion of the � chain
in the previous paragraph. By further applying H , M increases
again at 50 T until approximately 70 T. Above 70 T, M
exhibits a behavior of smaller gradients, which suggests a
plateau behavior. The magnetic moment at this magnetization
plateau is approximately 0.8 μB.

To analyze the behavior of the experimental M, we carried
out numerical-diagonalization calculations, results of which
are shown by steplike magnetization processes in Fig. 4. In
the following, the comparison between the experimental result
and the numerical result will be discussed. The experimental
inflection point of M ∼ 0.37 μB is close to M = (1/3) μB

but seems slightly larger than M = (1/3) μB; in theoretical
results, on the other hand, the plateau just at M = (1/3) μB

is unclear because the results of N = 30 and 36 show only
small widths at M = (1/3) μB although the result of N = 24
shows a large width at M = (1/3) μB. Instead, magnetizations
M = (4/9) μB for N = 36 and M = (2/5) μB for N = 30

FIG. 4. (a) Magnetization curves of Cs2LiTi3F12 measured at 4.2
and 1.3 K up to 75 T and theoretical spontaneous magnetization
normalized by the saturation magnetization for system sizes N = 24,
N = 30, and N = 36, and (b) differential curves of magnetization as
a function of magnetic field. Abrupt increases of magnetization are
observed at approximately 18 and 50 T. The magnetization curves
show 1/3 and 0.8 magnetization plateau at about 37 and 70 T,
respectively.

show large widths. These theoretical behaviors are possibly
related to the experimental M ∼ 0.37 μB that is larger than
M = (1/3) μB. However, the field H ∼ 36 T of this inflection
point is smaller than the field range of M = (4/9) μB for
N = 36 and M = (2/5) μB for N = 30. The reason is unclear
at present. The present experimental measurement certainly
detects the lower-field inflection point of M ∼ 0.04 μB at
H ∼ 7 T. A similar inflection point was also observed in the
case of Cs2KTi3F12 [10]. Our result for N = 36 reveals a large
width of M = (1/9) μB for N = 36. There is a possibility
that our theoretical large width is related to the experimental
inflection point. For further investigation of whether or not the
experimental inflection point suggests the plateau behavior,
theoretical studies by numerical diagonalizations for larger
clusters giving higher resolution results will be required.

The most marked point is the behavior around M ∼
0.8 μB. Our theoretical results reveal a plateau behavior
approximately between 60 and 125 T. On the other hand,
the low-temperature experimental result clearly reveals small
gradients of M above 70 T. The small gradients suggest that
our experimental measurement matches the behavior of the
low-field side edge of the plateau in the theoretical results.
In the magnetization process of the � chain, we expect a
significant jump of the magnetization just before saturation
[41]. This would corresponds to the maximum of dM/dH at
55T T in Cs2LiTi3F12. Since 2/3 of Ti atoms form the �

chain, saturation of the � chain gives (2/3) μB. We think
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that saturation of the � chain plus a small magnetization of
the 1D chain could lead to a 0.8 μB magnetization plateau in
Cs2LiTi3F12.

Note also that a behavior of a plateau with a large M near
the saturation was not observed in Cs2KTi3F12 owing to the
limitation of the magnetic field in Ref. [10], although the ex-
istence of a plateau with the same height for Cs2KTi3F12 was
theoretically predicted [13]. Reference [13] also suggested
the existence of a plateau with a large M near the saturation
for Cs2NaTi3F12 and Rb2NaTi3F12. The present agreement of
the plateau at around M ∼ 0.8 μB for Cs2LiTi3F12 between
the experiment and theory suggests that higher-field mea-
surements for Cs2KTi3F12, Cs2NaTi3F12, and Rb2NaTi3F12

will be interesting future studies. The above explanation of
0.8 μB magnetization plateau for Cs2LiTi3F12 is different
from those for the other Ti kagome fluorides, which all have
differently distorted kagome lattices. We believe that it is this
diversity that gives new insights into the magnetic properties
of (distorted) kagome antiferromagnets.

IV. CONCLUSIONS

We have studied crystal structure and magnetic properties
of Cs2LiTi3F12, which has an S = 1/2 distorted kagome lat-
tice. The distortion of the kagome lattice is the largest among
the four A2BTiF12 compounds. The temperature dependence
of χ and the magnetization curve of Cs2LiTi3F12 are very
similar to those of Cs2KTi3F12, which has the smallest dis-
tortion of the kagome lattice. However, density functional
theory predicts different magnetic models for Cs2LiTi3F12

and Cs2KTi3F12. This is an indication that the electronic and
magnetic anisotropy of the compounds cannot be read off in a
simple way from the structural distortion. The magnetic model
of Cs2LiTi3F12 consists of antiferromagnetically coupled spin
chains and anisotropic � chains. Both our experiment and nu-
merical diagonalization study reveal that this system exhibits
1/3 and 0.8 magnetization plateaus. It is an interesting open
question if the new material Cs2LiTi3F12 has a spin gap.
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