
Nonthermal phase transitions in semiconductors induced by a femtosecond extreme

ultraviolet laser pulse

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2013 New J. Phys. 15 015016

(http://iopscience.iop.org/1367-2630/15/1/015016)

Download details:

IP Address: 79.221.57.31

The article was downloaded on 27/01/2013 at 08:32

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/15/1
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Nonthermal phase transitions in semiconductors
induced by a femtosecond extreme ultraviolet
laser pulse

Nikita Medvedev1,4, Harald O Jeschke2 and Beata Ziaja1,3

1 Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron
DESY, Notkestrasse 85, D-22607 Hamburg, Germany
2 Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main,
Max-von-Laue-Strasse 1, D-60438 Frankfurt, Germany
3 Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego
152, 31-342 Kraków, Poland
E-mail: nikita.medvedev@desy.de

New Journal of Physics 15 (2013) 015016 (22pp)
Received 12 July 2012
Published 22 January 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/1/015016

Abstract. In this paper, we present a novel theoretical approach, which allows
the study of nonequilibrium dynamics of both electrons and atoms/ions within
free-electron laser excited semiconductors at femtosecond time scales. The
approach consists of the Monte-Carlo method treating photoabsorption, high-
energy-electron and core-hole kinetics and relaxation processes. Low-energy
electrons localized within the valence and conduction bands of the target are
treated with a temperature equation, including source terms, defined by the
exchange of energy and particles with high-energy electrons and atoms. We
follow the atomic motion with the molecular dynamics method on the changing
potential energy surface. The changes of the potential energy surface and of
the electron band structure are calculated at each time step with the help of
the tight-binding method. Such a combination of methods enables investigation
of nonequilibrium structural changes within materials under extreme ultraviolet
(XUV) femtosecond irradiation. Our analysis performed for diamond irradiated
with an XUV femtosecond laser pulse predicts for the first time in this
wavelength regime the nonthermal phase transition from diamond to graphite.
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Similar to the case of visible light irradiation, this transition takes place within a
few tens of femtoseconds and is caused by changes of the interatomic potential
induced by ultrafast electronic excitations. It thus occurs well before the heating
stimulated by electron–phonon coupling starts to play a role. This allows us to
conclude that this transition is nonthermal and represents a general mechanism
of the response of solids to ultrafast electron excitations.
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1. Introduction

A few years ago, a new era of intense free-electron lasers (FELs) began. These brilliant fourth
generation light sources for extreme ultraviolet (XUV; photon energies from a few tens to a few
hundreds of eV) and soft x-ray radiation provide intensities that have so far been the domain of
optical lasers. Material response to femtosecond laser pulses has been intensively studied ever
since, both experimentally [1–12] and theoretically [11–17]. Irradiation of solids with ultrashort
laser pulses in the optical regime leads to interesting ultrafast phenomena, for example, ultrafast
phase transitions [18–23], ablation [24, 25], excitation of coherent phonons [26, 27] and optical
breakdown [28, 29]. The femtosecond pulse duration and the down-to-angstrom wavelength
of the XUV lasers make these a promising tool for ultrafast nanoscale research in solid-state
physics. These qualities have already stimulated dedicated studies of the material response to
intense XUV pulses, giving access to previously unexplored regimes of warm dense matter [3,
6, 11, 18–21, 30–32], nonequilibrium kinetics [14–17] and ultrafast material modifications
[8, 33].

Laser-induced nonequilibrium phase transitions have been intensively studied over the last
decade since qualitatively new effects manifested themselves in the experiments [18, 19, 28, 34].
The solid–solid phase transition is of particular interest for basic research as well as for practical
applications. A few theoretical studies have been performed on the kinetics of these ultrafast
phase transitions [18–20, 22, 23]. The diamond-to-graphite phase transition, following intense
visible light irradiation, is taking place within a hundred femtoseconds, before electron–phonon
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coupling starts to play a role [22]. The graphitization of diamond is an example of the so-
called nonthermal phase transition (the most famous realization of which is nonthermal melting
[18, 19]). It was also observed for other semiconductors and dielectrics [18–23, 35]. The
nonthermal phase transition is caused by the transient changes of the interatomic potential,
which stimulate atomic motion and the following transition of the whole electron–atom system
into a new transient state [22, 23, 36]. After the relaxation of the electronic subsystem, and
thus of the potential energy surface, the material may relax into a new structural equilibrium
configuration, different from the initial one [36]. This process requires only electronic excitation
and the corresponding change in the atoms’ potential energy surface, without exchange of the
kinetic energy between electron and phonon subsystems, and therefore it takes place on the time
scale of an atomic vibration (a few tens of femtoseconds) [18].

However, until now it was not clear whether this nonthermal phase transition is only
specific for irradiation with visible light. In this work, we perform a theoretical study of the
transient response of diamond to femtosecond XUV laser pulse irradiation. For the first time,
we show that the nonthermal phase transition of diamond into the graphite phase should occur
also at the irradiation at these wavelengths on femtosecond time scales. Within our model we are
able to distinguish between (i) the nonthermal phase transition, which is a result of interatomic
potential modifications due to electronic excitations, and (ii) the heating of the atoms due to
electron–phonon coupling. Our results clearly indicate that nonthermal phase transition is the
mechanism of the ultrafast graphitization of diamond.

This paper gives a detailed description of our newly developed hybrid model. It starts
with the description of the basics of the model and then discusses the assumptions and
approximations made. Let us emphasize that our hybrid model is based on earlier approaches:
for atomic motion and the tight-binding method, we used the same method as that in the work
by Jeschke et al [22]; for tracing of high-energy electrons the Monte-Carlo (MC) method is
used, which is based on the work of [13–15]. The combination of MC and the temperature
equation relies on the work by Osmani et al [37]. The novelty of our approach consists in
combining all these different approaches into one consistent model. This allows us to follow in
a computationally efficient way the x-ray irradiation of the material. More technical details of
the methods, as well as the specific parameters, are listed in the appendices. Finally, the results
of the model, describing the FEL irradiation of diamond in the conditions used in experiments
with the Free-Electron Laser in Hamburg (FLASH) [9, 10], are shown. A discussion of the
results concludes the paper.

2. The model

XUV photons, when penetrating materials, excite electrons into high-energy states. At the range
of intensities relevant for solid–solid laser-induced phase transitions, single-photon absorption
is the dominant channel of photoabsorption [15]. A photoexcited electron then loses its energy
via collisions with atoms. If the electron energy is sufficiently high, it can excite secondary
electrons via inelastic scattering (the secondary impact ionizations). It can also scatter elastically
on atoms of the lattice. Both processes are taking place at the femtosecond time scale [38].
Losing its energy, the electron thermalizes and finally falls into the Fermi sea of the valence or
conduction band electrons. For the specific case of XUV excited electrons, it has been shown
that partial thermalization of the low-energy electrons occurs already within a few femtoseconds
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(during the laser pulse itself) [12–15]. The deviation from the thermal equilibrium distribution
for this fraction of low-energy electrons is fairly small, even during the transient nonequilibrium
state. However, the second fraction of electrons—the high-energy electrons produced by the
XUV photons directly, or indirectly via a subsequent relaxation of a deep-shell hole—remain
nonthermalized during a few tens or even hundreds of femtoseconds. The number of these
electrons is small, compared to the total number of valence electrons, and their energy is
high. The characteristic two-component shape of the electron distribution function after intense
XUV irradiation [12–15] is then referred to as the ‘bump on hot tail’ distribution [17]. That
particular shape encourages us to treat those two fractions of electrons with different dedicated
(numerically efficient) methods.

Electrons of the valence band act as an attractive potential for ionic cores in semiconductors
and dielectrics. Their distribution directly affects the potential energy surface of atoms and,
therefore, it influences the structure of the material. This is of importance for the solid–solid
phase transitions, because the electrons excited are then also affecting the interatomic potential.
These fast radiation-induced changes of the potential energy surface of atoms define the kinetic
pathways and can stimulate phase transitions. Consequently, the atomic disorder affects the
electronic band structure and the kinetics of the valence and conduction band electrons. Both
these effects must be addressed if we want to model the ultrafast material response to XUV
irradiation. To treat the electronic and atomic dynamics efficiently, we have developed a
dedicated hybrid model whose details are described below.

2.1. Overview of the hybrid model

As described before, the radiation-induced electron transient distribution during and after an
XUV laser pulse has the shape of the so-called ‘bump on hot tail’ [17] distribution consisting of:
(i) a thermalized bath of low-energy electrons within the valence and conduction bands and (ii) a
high-energy nonequilibrium tail [12, 14, 15]. In the case of a correlated many-body system (such
as the low-energy-electron fraction), it is efficient to treat its kinetics with statistical approaches,
such as, e.g. the Boltzmann kinetic equation [12, 39, 40]. If the electronic system is close to
equilibrium, then the simpler statistical concept of a temperature can be applied.

For the high-energy nonequilibrium electrons, which are very few at a low laser fluence,
methods for tracing individual particles are more efficient. The MC method, simulating
the trajectories of individual particles event by event, does not require a numerical grid
in momentum or energy space, in contrast to techniques based on Boltzmann equations.
The extensive grid necessary for describing energetic particles would make the Boltzmann
method inefficient. Therefore, in our model we apply a combination of both the methods:
the temperature approach for low-energy electrons and the MC modeling of the high-energy
nonthermalized electrons (similar to [37]). A proper tracing of the high-energy electron cascades
is important to interpret the experimental data [11].

For tracing the lattice dynamics, we employ a molecular dynamics (MD) technique [22].
The atomic motion is calculated on a potential energy surface which is updated at each time
step according to the transient electron distribution. After moving the atoms, we recalculate
the electronic band structure using the tight-binding method [24], which accounts for the
transient spatial positions of all atoms and the distribution function of the electrons. The
numerical scheme is presented in figure 1, and further details are given in the following
subsections.
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Figure 1. Schematic picture of the numerical realization of the hybrid model.
The MC method is used for high-energy electrons and deep shell holes; the
temperature equation is applied to valence and conduction band electrons;
the atomic motion is traced with the molecular dynamics (MD) technique;
the potential energy surface and the electron band structure (energy levels) are
calculated within the tight-binding formalism. The arrows show the connections
between different modules of the model.

2.2. Combined Monte-Carlo and temperature approaches for electrons

As schematically shown in figure 1, we divide all electrons into two fractions: (i) low-energy
electrons (with energies below a cut-off energy ∼Ecut, which is initially equal to the band
gap energy: around 5 eV for diamond) are treated with a temperature model, while (ii) high-
energy electrons capable of performing secondary ionization of the valence band electrons
(i.e. with energy above the band gap) are followed individually with the MC scheme. At each
time step, we calculate the total number of low-energy electrons, N low

e , knowing how many
electrons got excited by the incoming photons from the laser pulse, Nph, and by the secondary
collisions of the high-energy electrons, Nimp. Electrons that reach the energy above the cut-off
energy are transferred to the high-energy domain; conversely when an electron from the high-
energy domain loses its energy below the cut-off energy, it joins the low-energy domain. Thus,
the total number of low-energy electrons is calculated as N low

e (t + dt) = N low
e (t) + Ñ high

e (t) −

Nph(t) − Nimp(t), where Ñ high
e (t) denotes the fraction of high-energy electrons that fell into

the low-energy domain. The total energy of low-energy electrons, E low
e , is calculated from the

conservation of total energy among all the electrons (in both domains), and the potential and
kinetic energy of atoms. More details will follow in section 2.4.

Knowing the total energy and the number of the low-energy electrons, we can find their
temperature and chemical potential. They are calculated from the zeroth and the first moments
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of the Fermi distribution function by solving the inverse problem [37]

N low
e =

Ecut∑
Emin

fe(Ei) =

Ecut∑
Emin

2

1 + exp ((Ei − µ)/Te)
,

E low
e =

Ecut∑
Emin

Ei fe(Ei) =

Ecut∑
Emin

2Ei

1 + exp ((Ei − µ)/Te)
, (1)

where the summations include all energy levels, Ei , corresponding to the actual band structure of
the material that changes in time, and Emin is the lowest energy level of the valence band. These
energy levels are calculated with the tight-binding method described in section 2.4. The factor
2 in the Fermi-distribution function fe(Ei) accounts for the electron spin; µ is the transient
chemical potential of electrons and Te is their temperature. We solve equations (1) for the known
values of N low

e and E low
e at each time step by the bisection method, finding the corresponding

values of µ and Te. Note that at the partial occupation of the conduction band (e.g. at nonzero
electronic temperatures) the cut-off energy, Ecut, must be extended above the band gap value
so as to account for the exponential tail of the electron distribution function. This gives an
additional constraint for Ecut, depending on µ and Te. The choice of Ecut made above satisfies
this constraint.

For high-energy electrons, we perform an MC tracing of individual particles with event-
by-event simulations, similar to those in [14–16]. First, we calculate how many photons are
absorbed at each time step. We assume that each photon excites only one electron. As discussed
earlier, this is a good approximation for photons at XUV energies [15]. The shell from which
an electron is excited is chosen according to the relative photon attenuation length for shell
photoabsorption [41]. In the case of valence-band photoabsorption, we choose a particular
energy level Ei randomly.

After the electron is excited from the valence band, it ‘disappears’ from the low-energy-
electron domain, and joins the high-energy fraction. All photons absorbed at this time step
undergo the same procedure, creating highly excited electrons. If the energy of the excited
electron falls below Ecut, this electron does not appear in the high-energy-electron domain any
more, but only contributes to the source term in the low-energy-electron domain, Ñ high

e , and its
total energy, E low

e .
The excited high-energy electron starts to propagate and to perform secondary scattering

events. In order to model this, we calculate the electron mean free path, depending on the current
electron energy. We use the method of the generalized complex dielectric function [42–45].
With this method, the cross-section of inelastic electron scattering, σi(Ee), is calculated from
the complex dielectric function, ε(ω, q), as

dσi(Ee, h̄ω)

dh̄ω
=

2e2ne

π h̄2v2

∫ q+

q−

dq

q
Im

(
−1

ε(ω, q)

)
, (2)

with q± =

√
2me/h̄2

(√
Ee ±

√
Ee − h̄ω

)
. Here the cross-section also depends on the transferred

energy h̄ω, and is integrated over the transferred momentum q. The charge e denotes the electron
charge and ne = N low

e /� is the current electron density of the low-energy domain. The volume
� is the volume of our simulation box, and it is changing in time as will be described in
section 2.3. The constant, h̄, is the Planck constant, and v is the incident electron velocity
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corresponding to the energy Ee. Using the experimental data, the inverse complex dielectric
function can be parameterized as, e.g., proposed in [42, 45]:

Im

(
−1

ε(ω, q)

)
=

∑
j

A j0 j h̄ω

(h̄2ω2 − (E0 j + h̄2q2/(2me))2)2 + (0 j h̄ω)2
. (3)

The coefficients used, A j , 0i and E0 j ( j = 1, . . . , 6), are listed in table A.1 in appendix A.
The corresponding free flight distance, le, of an electron can then be sampled according

to the Poisson distribution with the mean free path 〈le〉, which is linked to the calculated total
cross-section, σi(Ee), as

le = −〈le〉 ln(γ ), 〈le〉 = (σi(Ee)ne)
−1,

σi(Ee) =

∫ Ee/2

Emin

d(h̄ω)
dσi(Ee, h̄ω)

d(h̄ω)
, (4)

where the random number, γ , is uniformly distributed in the range of (0,1].
During collisions, the transferred energy, 1E , is calculated from the differential and the

total cross-sections, using another random number γ [13]5:

γ σi(Ee) =

∫ 1E

0

dσi(Ee, h̄ω)

d(h̄ω)
d(h̄ω). (5)

An inverse problem must be solved to find the transferred energy 1E out of the given values of
γ , dσi and σi(Ee) in equation (5). This can be done again with the bisection method.

After the collision we update the electron energy, Ee → Ee − 1E , and calculate the new
mean free path for the electron and the time of the next collision. If this time is smaller than our
current time step, we simulate the next collision for the electron following the same procedure.
In the case of the next collision occurring during the next time step, we save the electron
parameters, and follow the next electron [14].

The secondary electron to which the energy, 1E , is transferred, is then chosen randomly
among all the electrons of the valence band, with the ionization potentials Ei not higher than
the transferred energy [15]. After that, from the energy of the secondary electron, 1E − Ei ,
we determine whether it belongs to the low-energy domain or to the high-energy domain.
In the latter case, we follow the kinetics of this electron in the same manner as in the case
of the primary electron. In the same way, we follow all the produced primary and secondary
electrons.

2.3. Molecular dynamics method for atoms

For modeling the atomic motion we use the classical MD method [46, 47], where the forces
acting between the atoms are calculated with the help of semi-empirical simulations, namely,
the transferable tight-binding method [22, 48]. This scheme relies on the Born–Oppenheimer
approximation, assuming that the fast moving electrons follow adiabatically the motion of ions.
In this way, the electronic subsystem only creates an additional potential for the atomic motion,
which is calculated within the tight-binding approximation described in the next section. The
adiabatic approximation allows us to solve the classical equation of motion for all atoms of our

5 Note that here and further on we sample every random number individually, and the recurring notation γ does
not indicate any reuse of random numbers.
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sample, which are described by spatial coordinates and velocities; however, the potential energy
surface is calculated quantum mechanically.

At present, it is hardly possible to apply the tight-binding MD method when the number
of ions exceeds a few hundred to a thousand. The typical laser spot radius for the FLASH
laser is approximately 10 µm, and the XUV-photon penetration depth may be above 100 nm.
This volume corresponds to at least a few billion atoms. Thus, we can choose only a small
simulation box (supercell) inside the laser spot with its size much smaller than the laser spot,
and apply periodic boundary conditions. In this work, we considered three different numbers of
atoms contained in the simulation cell: 64, 144 and 216, in order to investigate the effect of cell
size on the simulation results. The changing number of atoms had no significant influence on
the results, only reducing the statistical fluctuation of the predicted quantities. The predicted
physical effects, as well as the related quantitative time scales and the average values of
simulation observables remained unchanged with increasing the number of atoms. Note that
it is computationally feasible to further increase the number of atoms within the unit cell but in
the present case the relatively small number was sufficient to obtain convergent results.

For MD modeling, the periodic boundary conditions are introduced with the
Parrinello–Rahman method [49], accounting for the changing geometry of the supercell. That
means that the size of the simulation box is assumed to be an additional variable entering the
Lagrangian of motion [22, 49–51]. This allows us to include the volume fluctuations of the
material at a given external pressure, its expansion due to heating, and to properly model a phase
transition, which changes the material density. Thus, we write the Lagrangian in the following
form [49]:

L =

N∑
i=1

Mi

2
ṡT

i hT h ṡi − 8({ri j}, t) +
WPR

2
Tr(ḣT ḣ) − Pexp �,

ri = h(si + z), zα ∈ {−1, 0, 1}, (6)

where the first two terms are responsible for the atomic motion; Mi is the atomic mass, ri

is the spatial coordinate of the atom i ; si are the relative coordinates of the atoms within the
simulation box; vectors z run through all neighboring supercells around our simulation box and
are responsible for the periodic boundaries; the matrix h of (3 × 3) size is constructed out of
the three vectors h = {a, b, c} that span the MD simulation box [36, 49, 50]; the superscript T
denotes the transposition of the matrix; and 8 is the potential energy surface, which depends
on the coordinates of all the atoms within the simulation box. The last two terms in equation (6)
are responsible for the kinetics of the supercell: the stretching and the shape variation of
the simulation box, changing length and orientations of the three vectors h = {a, b, c}. The
constant WPR is the effective mass of the supercell [49, 50]. With the demand that the volume
oscillations in carbon-based materials occur on physically reasonable time scales, it can be
chosen as WPR = Mi/25.5 [22, 36]. The notation Tr(X) is used for the trace of the matrix X .
The external pressure acting on the supercell is denoted as Pext. In our case it is equal to the
normal atmospheric pressure. The volume � = det(h) is the transient volume of the simulation
box, defined as the determinant of the matrix h.

As we do not use atomic pair potentials, but a full many-atom potential energy surface,
the equations of motion for the relative atomic coordinates si and for the supercell vector
components of h cannot be simplified as in the original work [49], but should be written
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explicitly as [36]

s̈i = −
1

Mi
g−1 ∂8

∂si
− g−1ġ ṡi , i = 1, . . . , N ,

ḧαβ =
1

WPR

(
N∑

i=1

Mi ṡT
i (hṡi) − Pext σ −

∂8

∂hαβ

)
, α, β = 1, . . . , 3, (7)

where g = hTh and σ = ∂�/∂hab. Details of derivations are presented in appendix C. The
potential energy surface, 8, is calculated within the tight-binding method, described in the next
section.

We use the Verlet algorithm for propagating the atomic coordinates and velocities in time,
as well as for the supercell coordinates and velocities [46, 47]. This ensures a stable numerical
scheme.

2.4. The transferable tight-binding method applied to carbon

Within the tight-binding method, the atomic Hamiltonian can be written as follows [22, 36, 48]:

H = HTB + Erep({ri j}), HTB =

∑
i jην

Hiη jν,

Hiη jν = εiηδi jδην + tην

i j (1 − δi j). (8)

It consists of two parts: the attractive part, HTB, which is calculated with the tight-binding
method, and the repulsive part describing the repulsion of atomic cores, Erep({ri j}). This
Hamiltonian is used to calculate the electronic energy levels at each time step, Ei (band
structure), entering equations (1), and to determine the potential energy surface 8({ri j}, t),
needed as the input to the equations of motion, equations (7). The coefficients, εiη, include
the on-site energy of atoms [48]; the hopping integrals, tην

i j , are calculated using the Slater
and Koster approach [48, 52]. In this method, the hopping integrals are considered as fitting
parameters to reproduce the band structure of the material [52]. They interpolate between the
accurate energies at selected k points. These energies are known from ab initio calculations. The
method takes into account only the s, px , py and pz valence orbitals of carbon, but this is enough
to reproduce the band structure with the required accuracy [22, 48].

In order to study structural transformations within carbon materials, such as the diamond-
to-graphite phase transition, the hopping integrals have to be ‘transferable’ between the different
structures. This means that these parameters have to be functions of the atomic coordinates
of all atoms in our simulation box. Therefore, the following scheme is used to calculate the
transferable hopping integrals—first, following the Koster–Slater procedure, we separate the
angular and the distance parametrizations as follows [52]:

t ss
i j = Vssσ ,

t spx
i j = li j Vspσ ,

t
px py

i j = li j mi j(Vppσ − Vppπ),

tpx pz
i j = li j ni j(Vppσ − Vppπ),

tpx px
i j = l2

i j Vppσ + (1 − l2
i j)Vppπ ,
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li j =
ri j,1

ri j
, mi j =

ri j,2

ri j
, ni j =

ri j,3

ri j
,

ri j,α =

∑
β

hαβ(siβ − s jβ + zβ), with α, β ∈ {1, 2, 3}, (9)

where the distance-dependent functions Vξ (with ξ = {ssσ, spσ, ppσ, ppπ}) are now
introduced [48]. The other hopping terms t

spy

i j , t
spz
i j , t

pypy

i j , t
pypz

i j , tpzpz
i j can be written

analogously [36]. Their dependence on the interatomic distance for each pair of atoms within
the simulation box and from the neighboring supercells is described by some fitting functions.
Also the repulsive potential energy is fitted. Following [48], these quantities are parameterized
as follows:

Vξ (ri j) = V 0
ξ

(
r0

ri j

)n

exp

[
n

(
−

(
ri j

rc

)nc

+

(
r0

rc

)nc
)]

,

Erep({ri j}) =

∑
i

F

∑
j

φ(ri j)

 ,

F(x) = a0 + a1x + a2x2 + a3x3 + a4x4,

φ(ri j) = φ0

(
r0

ri j

)m

exp

[
m

(
−

(
ri j

dc

)mc

+

(
r0

dc

)mc
)]

. (10)

All the corresponding coefficients and further details of equation (10) are given in appendix B.
The electronic energy level spectrum Ei is then obtained by diagonalization of the Hamiltonian
matrix HTB, constructed from equations (8)–(10).

The potential energy surface can then be calculated as

8({ri j(t)}, t) =

∑
i

fe(Ei , t)Ei + Erep({ri j}) . (11)

Its corresponding derivatives for equation (7) and the coefficients for these derivatives can be
found in [36] and are also presented in appendix C. Let us emphasize that the transient electron
distribution function, fe(Ei , t), calculated in equations (1), enters in equation (11). Thus, the
time-dependent electronic distribution affects the atomic motion. In this manner, the problem
becomes self-consistent, closing the circle of the interconnections between the electrons and
atoms.

It must also be noted that the distribution function of electrons is split into two parts,
as discussed in section 2.2. Within our approach, removing electrons into high-energy states
reduces the number of low-energy electrons within the bands. This decreases the attractive part
of the inter-atomic potential, creating an effective transient charge non-neutrality. The changed
inter-atomic potential causes atom displacement which, in the case of high irradiation, may even
lead to a Coulomb explosion of the atomic system. Other modifications of the band structure
due to the presence of high-energy electrons are not taken into account. This is an approximate
way to account for these effects, but, going beyond the scheme of slow energy equilibration
between the high-energy electrons and the bands. We assume that this approximation works
fine in the case of low radiation fluences, when the number of excited high-energy electrons is
small in comparison with the number of valence electrons. However, it is not valid in the case
of higher fluences. This is a limitation of the current model. Similarly, in the case of core-hole
excitations, we also assume that the created core holes do not significantly affect the structure
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(a) (b)

Figure 2. The total energy of the system (black bold line), the total energy
of atoms (dashed red line, almost overlapping with the black line) and the
potential energy of atoms (dash-dotted green line) for: (a) below the damage
threshold, 0.68 eV absorbed per atom; and (b) above the damage threshold,
0.95 eV absorbed per atom.

of the valence and conduction bands and the inter-atomic potential if the density of core holes
is much lower than the total electron density. In the case of higher fluences, i.e. higher density
of core holes, this assumption breaks down [8]. At a large number of highly excited electrons or
holes, the tight-binding method with predetermined tight-binding parameters cannot be applied
to describe the band structure, as the tight-binding parameters are adjusted to the ground state,
and they are no longer able to reproduce the electronic structure when it is extremely excited.
In both cases the correct description of perturbed band structure would then require ab initio
methods (e.g. density functional theory and time-dependent density functional theory).

3. Results and discussions

We have modeled the irradiation of diamond with a femtosecond laser of τ = 10 fs duration at
the full-width at half-maximum of a Gaussian temporal profile, and a photon energy of 92 eV.
The chosen parameters correspond to parameters of the free-electron laser FLASH used in
experiments with solids [1, 6, 7, 9, 10]. First, we place all the atoms at positions corresponding
to the diamond structure, and assign to them initial velocities according to a thermal distribution
(assuming room temperature). We then let the atoms relax for a number of time steps in order
to reach an equilibrium distribution. We also place electrons according to the Fermi distribution
at 300 K. For the case of a wide-band-gap semiconductor, this implies full occupation of the
valence band and an empty conduction band. The time step used in our simulation is 0.1 fs. This
guarantees energy conservation with an accuracy of ∼0.1% with the Verlet algorithm used for
the simulation of atomic motion [36].

Figures 2(a) and (b) show the calculated total and potential energies in the diamond target
irradiated with the laser pulse. The maximum of the Gaussian pulse is at 30 fs. After the
irradiation, the total energy of the system is conserved. In order to check it, we performed
longer calculations for up to 50 ps time for unexcited and weakly excited systems, and observed
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(a) (b)

Figure 3. Fraction of excited high-energy electrons (with energies above Ecut)
calculated with respect to the total number of valence electrons at t = 0 fs in
diamond for the case: (a) below the damage threshold, 0.68 eV absorbed per
atom; and (b) above the damage threshold, 0.95 eV absorbed per atom.

no changes in the energy conservation properties: the energy was conserved with the same
accuracy of 0.1%.

As expected, the figures show a direct increase of the total energy during the laser pulse
(from ∼20 to ∼40 fs). The potential energy of the atoms is fluctuating, being interchanged with
the kinetic energy of the atoms. The total energy of the atoms during and shortly after the pulse is
slightly lower than the total energy in the system; this reflects the fact that a part of the energy is
transiently stored in the high-energy electrons and then is relaxing back via secondary electron
scatterings. These high-energy electrons transiently have energies between the bottom of the
conduction band and 92 eV, but are relaxing fast to the low-energy states (see below, figure 3),
returning their energy to the potential energy of atoms. As was explained in the previous section,
the atomic potential energy contains the repulsive contribution of ionic core–core interaction,
and the attractive contribution of low-energy electrons; thus, the low-energy-electron energy is
already included in the potential energy of atoms. Therefore, the sum of high-energy electrons’
energy and the total atomic energy is the conserved quantity in our simulation.

As can be observed in figure 3, the high-energy electrons are relaxing fast to the low-energy
state, inducing secondary electron cascades until approximately 100–150 fs. The majority of
the high-energy electrons fall into the low-energy domain even within some 50–70 fs. So,
transiently, the contribution of the electrons to the interatomic attractive potential is reduced,
but is then restored, still before the phase transition starts.

One can see a clear difference between the ‘below damage threshold’ and ‘above damage
threshold’ cases in figures 2(a) and (b), respectively: the potential energy fluctuates much more
strongly in the latter case. This occurs because in this case the atoms are already undergoing
a phase transition from diamond to graphite. The predicted phase transition can be followed
in figure 4, where snapshots of atomic positions are recorded at different times for the case of
higher energy deposition (0.95 eV per atom). In an unexcited diamond, atoms are located at
their equilibrium positions at t = 0 fs. Later, they absorb the energy from the laser pulse (see the
snapshots at 20 and 40 fs) and start to move extensively. At 60 fs, the structural rearrangement
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Figure 4. Six snapshots of atomic positions in the supercell for the case of
the energy deposition of 0.95 eV per atom recorded at different times (0, 20,
40, 60, 80 and 100 fs). The position of the maximum of the Gaussian-shaped
laser pulse is at 30 fs. The figure is prepared with the help of VESTA 3 plotting
software [53].

already starts, and one can see the breaking diamond bonds. It is completed by the time of
80–100 fs (similar time scales were recently reported in [11]). The atomic structure is then
graphite-like with the characteristic parallel planes. The plotted pair correlation function in
figure 5 also indicates the occurrence of a structural transition from the diamond to the graphite
phase. At these ultrashort times, the newly formed graphite is not in its natural state, as its
density is still diamond-like, i.e. higher than the normal graphite density. On later time scales,
the supercell is relaxing with its increasing size, and the natural graphite density is then reached.

Figure 5 shows four snapshots of the calculated pair correlation function of atoms: before
irradiation (0 fs); during irradiation (50 fs); shortly after the pulse, when the phase transition
to the graphite state is in progress (75 fs); and when the phase transition is already completed
(100 fs). At the first snapshot, the peak at 1.53 Å corresponds to the nearest-neighbor distance
of atoms in solid diamond at room temperature. On later time scales, this peak is shifting to the
position of 1.41 Å, which is the nearest-neighbor distance of atoms in graphite. Such a shift is
a clear indicator of the phase transition. This transition is stable and irreversible, as the graphite
phase is more stable than the diamond one [54]. In our case we have checked the stability of the
new configuration by running the code for longer time scales (several ps).

Figures 6(a) and (b) show the transient behavior of the predicted instantaneous
temperatures of low-energy electrons and atoms. As expected, in both cases, below the damage
threshold and above the damage threshold, the temperatures fluctuate, following the oscillations
of kinetic energy. For the below-damage fluence, the lattice temperature almost does not change
on a time scale of half a ps, similar to the results reported in [55]. The high-energy electron
temperature increases during the pulse and then oscillates around some average value until the
diffusive relaxation takes place on a picosecond time scale [22]. Such a relaxation is, however,
not included in our model. In contrast, for the above-damage fluence, we can see a sudden
jump in the lattice temperature after the pulse is finished. The average lattice temperature then
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Figure 5. Pair correlation function of carbon atoms that are absorbed on average
0.95 eV per atom from the XUV pulse. Four different time instances are shown:
before the laser pulse (0 fs); shortly after the pulse (50 fs); during the phase
transition from diamond to graphite (75 fs); and after the transition to graphite
has been completed (100 fs).

increases further. This is correlated with the average decrease of the potential energy of the
atoms (figure 2(b)). Interestingly, although the final temperature of the atoms, reached at ∼80 fs,
corresponds to the graphitization temperature of diamond [54], its increase coincides with the
phase transition itself, as can be seen from the comparison of the time scales in figures 2(b)
and 5. This implies that the temperature increase is not the cause of the phase transition, but
its consequence. As atoms move to their new equilibrium positions on the changed potential
energy surface (the nonthermal phase transition process), they gain kinetic energy and, thus,
temperature. In this way it is possible for the atoms to undergo the structural phase transition
much faster than at the normally expected pico- to nano-second time scales [36].

Our simulations were performed for different values of absorbed energies, and the results
were analyzed in order to determine the threshold fluence for the phase transition. We found that
the energy, which is enough to induce graphitization, is ∼0.69 eV per atom for 92 eV photons.
Note that the nonthermal phase transition of diamond to graphite predicted with our model is
induced by the electronic excitation, when the density of electrons in the conduction band (both
in low- and high-energy domains) overcomes a threshold of ∼1.5% of the valence electron
density. A preliminary comparison with experimental data obtained at FLASH [9, 10] shows the
agreement of the calculated damage threshold for diamond with the data. A detailed analysis is
in progress.

It is also interesting to note that there can be a delay between the laser pulse and
the phase transition for near-damage-threshold fluences. For absorbed fluences from 0.69 to
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(a) (b)

Figure 6. The temperatures of the low-energy electrons (red line) and of the
atoms (green line) as functions of time for (a) below damage threshold irradiation
of diamond, at 0.68 eV of absorbed energy per atom; and for (b) above damage
threshold irradiation of diamond, at 0.95 eV of absorbed energy per atom.

approximately 0.7 eV per atom, the calculations indicate the start of the phase transition after
an arbitrary delay from a few to a few hundred femtoseconds (the lower the fluence, the longer
the delay). This indicates the stochastic origin of the process, showing that the atomic system
might require some time to realize its kinetic relaxation pathway. This topic of near-threshold
behavior requires additional investigations, which are, however, beyond the scope of the present
paper.

The predicted nonthermal ultrafast phase transition under XUV irradiation of diamond
is very similar to that observed for visible light irradiation [22]. The estimated damage
threshold agrees well with the graphitization threshold for the visible light irradiation [22, 36].
Although the transient electron behavior is different, the atomic kinetics on the changing
potential energy surface manifests itself in a similar manner: the irradiated diamond undergoes
a phase transition to the graphite phase on a femtosecond time scale. This allows us to
conclude that the nonthermal phase transition can be a general mechanism of a semiconductor
or a dielectric response to ultrafast electron excitation. As the nonthermal phase transition
can be monitored directly with femtosecond resolution by time-resolved measurements
of atomic kinetics [11, 18, 19], a dedicated experiment with FELs should verify our
predictions.

Note also that transferable tight-binding parameters for different materials (semiconductors
and dielectrics) can be found in the literature (see, e.g., [36, 56–60]), as well as electron cross-
sections of scattering (e.g. [43, 45, 61, 62]). Thus, the extension of our method to different
materials is straightforward. In this way a wide range of applications can be addressed with the
developed model.

4. Conclusions

In this work, we have described our newly developed hybrid model of semiconductor response
to XUV femtosecond laser pulses. The model consists of interlinked modules, dedicated to
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simulating electron and lattice dynamics. The transient electronic state is treated with the two
methods: highly excited electrons are traced with the MC scheme of event-by-event individual
particle simulation; the low-energy electrons, populating the valence and the conduction bands,
are described by an electronic temperature, with electrons populating a transient electronic band
structure. Both domains are, of course, interconnected, allowing the electrons to interchange
between low- and high-energy sectors via excitation and relaxation mechanisms.

The lattice dynamics is evaluated with the Parrinello–Rahman MD method within a
supercell, where the potential energy surface is updated at each time step of the simulation with
a transferable tight-binding method. This method naturally accounts for the transient electronic
band structure, which follows the current electron distribution and the changes of the atomic
positions of all the atoms within the simulation box.

We applied our hybrid model to solid diamond, irradiated with a laser pulse of 10 fs
duration and a photon energy of 92 eV. This corresponds to the typical FLASH laser parameters
used in solid state and plasma experiments. The model has proved to be robust and numerically
stable. The results of the modeling demonstrated that the ultrafast nonthermal diamond
graphitization is completed within a few tens of femtoseconds after the exposure. This transition
is followed by the increase of the lattice temperature up to the ‘graphitization’ temperature.
The time scale of this transition is comparable with the electronic relaxation time. That
allows us to conclude that nonthermal phase transitions are a general mechanism of the
response of solids to ultrafast electronic excitations. The calculated graphitization threshold of
diamond for a femtosecond laser pulse with 92 eV photon energy is found to be ∼0.69 eV per
atom, which corresponds to the excitation of ∼1.5% of valence electrons into the conduction
band.
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Appendix A. Electron inelastic scattering cross-section in diamond

The coefficients for the inverse complex dielectric function that we used in our model are
collected in table A.1. The set of the coefficients for equation (3) consists of the summation
of six functions ( j = 1, . . . , 6) for the scattering of the electron on the valence band electrons,
and one function for the K-shell electron ionization [43, 45]. These coefficients were chosen to
reproduce the experimental data of the optical scattering from [41, 63].

Appendix B. Tight-binding Hamiltonian coefficients for carbon

The coefficients entering equations (10) are presented in table B.1. In addition to them,
the following parameters are used: r0 = 1.536 329 Å, rc = 2.18 Å, n = 2, nc = 6.5 [48]. The
Hamiltonian from equation (8) is the symmetric matrix, consisting of blocks. Each block is
a (4 × 4)-matrix. The diagonal of the Hamiltonian matrix contains the on-site energies of an
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Table A.1. Coefficients of the complex dielectric functions used for the electron
inelastic cross-section.

Shell j A j 0 j E0 j

Valence band 1 17 2 22.3
2 25 4 24.5
3 185 5.5 29.2
4 29 4 32
5 221 11 35
6 505 37 47

K-shell 7 480 200 250

Table B.1. Tight-binding parameters of carbon taken from [48].

Electronic parameters
ξ ssσ spσ ppσ ppπ

V 0
ξ (eV) −5.0 4.7 5.5 −1.55

Repulsive potential parameters

φ0 (eV) 8.185 55
m 3.303 04
mc 8.6655
d0 1.64
dc 2.1052
a0 −2.590 976 512
a1 0.573 115 150
a2 −1.789 634 99 × 10−3

a3 2.353 922 152 × 10−5

a4 −1.242 511 696 × 10−7

atom i . The off-diagonal blocks, connecting atoms i and j , contain the hopping integrals [36]:

Hi i =


εs 0 0 0

0 εp 0 0

0 0 εp 0

0 0 0 εp

 , Hi j =


t ss
i j t spx

i j t
spy

i j t
spz
i j

−t spx
i j tpx px

i j t
px py

i j tpx pz
i j

−t
spy

i j t
px py

i j t
pypy

i j t
pypz

i j

−t
spz
i j tpx pz

i j t
pypz

i j tpzpz
i j

 , (B.1)

where εs = −2.99 and 3.71 eV, and the hopping terms are defined by equations (9) and (10),
with the coefficients taken from table B.1.

The functions Vξ (ri j) and φ(ri j) smoothly reach the zero value at some fixed cut-off
distance. This is important for the accuracy of the MD simulations. Following [48], the
following scheme is used: the functions Vξ (ri j) and φ(ri j) are replaced with the properly
fitted polynomial functions at the distances r1 and d1, correspondingly, equations (B.2). The
polynomials smoothly approach ‘zero’ at the distances of rm and dm , respectively. At the larger
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Table B.2. Polynomial coefficients for carbon entering equations (B.2) as taken
from [48].

Coefficient cV
i for Vξ (ri j − r1) cφ

i for φ(ri j − d1)

c0 6.739 262 01 × 10−3 2.250 429 01 × 10−8

c1 −8.188 535 95 × 10−2
−1.440 864 06 × 10−6

c2 0.193 236 53 2.104 330 334 × 10−5

c3 0.354 287 43 6.602 439 02 × 10−5

values they are set equal to zero:

Vξ (ri j − r1) =

3∑
i=0

cV
i (ri j − r1)

i , φ(ri j − d1) =

3∑
i=0

cφ

i (ri j − d1)
i . (B.2)

Here the corresponding coefficients are: r1 = 2.45 Å, rm = 2.6 Å, d1 = 2.57 Å, dm = 2.6 Å; the
expansion coefficients cV

i and cφ

i are presented in table B.2.

Appendix C. Derivatives used in equations (7)

For the calculation of the forces acting on an atom in the equation of motion (7), one needs
to derive the derivatives of the potential energy surface obtained from equation (11). They
are calculated with the tight-binding method described in appendix B. Here we give the
corresponding derivatives, following [36]. We use the Hellman–Feynman theorem to obtain
the forces for atoms as

∂8({ri j(t)}, t)

∂ζ
=

∑
m

fe(Em, t)
∂ Em

∂ζ
+

Erep({ri j})

∂ζ
, i 6= j , (C.1)

where ζ = {sk, hγ δ}; the electron energy levels are calculated as the eigenvalues of the tight-
binding Hamiltonian Em = 〈m|HTB|m〉; the corresponding electron distribution function is
assumed to be homogeneous within the simulation box. The corresponding derivatives over
the relative coordinates of the atom k sk , and over the supercell vectors hαβ , can then be written
as follows:

∂8({ri j(t)}, t)

∂sk
=

∑
m

fe(Em, t)〈m|
∂ HTB

∂sk
|m〉 +

∂ Erep({ri j})

∂sk
,

∂8({ri j(t)}, t)

∂hαβ

=

∑
m

fe(Em, t)〈m|
∂ HTB

∂hαβ

|m〉 +
∂ Erep({ri j})

∂hαβ

. (C.2)

Here, the derivatives of the Hamiltonian constructed in equation (B.1) are written in terms
of the derivatives of the hopping integrals:

∂ Hiη jν

∂sk
=

∂tην

i j

∂sk
,

∂ HTB

∂hαβ

=
∂tην

i j

∂hαβ

, (C.3)
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where both the directional dependences and the distance dependences must be taken into
account. Noting that for the periodic boundary conditions

ri j =

√√√√ 3∑
α=1

r 2
i jα , ri jα =

3∑
β=1

hαβ(siβ − s jβ + zβ) =

3∑
β=1

hαβsi jβ ,

si jβ ≡ siβ − s jβ + zβ, with zβ ∈ {−1, 0, 1} , (C.4)

we obtain the following derivatives for the cosine directions from equation (9) for the atom k,
affected by all other pairs of atoms, i and j :

∂dα
i j

∂skγ

=
δik − δ jk

r 3
i j

(
r 2

i j hαγ − ri jα

3∑
δ=1

hδγ ri jδ

)
,

∂dα
i j

∂hαδ

= si jδ

(
δαγ

ri j
−

ri jαri jγ

r 3
i j

)
, (C.5)

where dα
i j = {li j , mi j , ni j} for α = {1, 2, 3}. The corresponding distance dependences are

obtained as the derivatives of equations (10):

∂Vξ (ri j)

∂rk
= −nVξ (ri j)

(
1

ri j
+

nc

ri j

(
ri j

rc

)nc
)

∂ri j

∂rk
,

∂ Erep({ri j})

∂rk
=

∑
i

∂ F (xi)

∂xi

∂xi

∂rk
, xi =

∑
j

φ(ri j) ,

∂ F(x)

∂xi
= a1 + 2a2x + 3a3x2 + 4a4x3 ,

∂xi

∂rk
=

∑
j

∂φ(ri j)

∂rk
,

∂φ(ri j)

∂rk
= −mφ(ri j)

(
1

ri j
+

mc

ri j

(
ri j

dc

)mc
)

∂ri j

∂rk
, (C.6)

where the corresponding derivatives over rk must be replaced with the derivatives over the
relative coordinates sk and over the supercell coordinates hγ δ, accordingly:

∂ri j

∂skγ

=
δik − δ jk

ri j

3∑
α=1

hαγ ri jα ,
∂ri j

∂hαδ

=
ri jγ si jδ

ri j
. (C.7)

With the derivatives of the polynomials, replacing the functions at large distances as
explained in appendix B, equations (7) can be solved for all the atom and supercell coordinates.
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[55] Dumitrică T, Garcia M E, Jeschke H O and Yakobson B I 2006 Breathing coherent phonons and caps
fragmentation in carbon nanotubes following ultrafast laser pulses Phys. Rev. B 74 193406

[56] Kwon I, Biswas R, Wang C Z, Ho K M and Soukoulis C M 1994 Transferable tight-binding models for silicon
Phys. Rev. B 49 7242–50

[57] Diakhate M S 2009 Theory of laser induced ultrafast structural changes in solids: calculations on cerium,
samarium sulfide, germanium and bismuth PhD Thesis Universität Kassel

[58] Jancu J-M, Bassani F, Della Sala F and Scholz R 2002 Transferable tight-binding parametrization for the
group-III nitrides Appl. Phys. Lett. 81 4838–40

[59] Bacalis N C, Papaconstantopoulos D A, Mehl M J and Lach-hab M 2001 Transferable tight-binding
parameters for ferromagnetic and paramagnetic iron Physica B 296 125–8
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