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Abstract. Electron beam-induced deposition with tungsten hexacarbonyl
W(CO)6 as precursors leads to granular deposits with varying compositions
of tungsten, carbon and oxygen. Depending on the deposition conditions, the
deposits are insulating or metallic. We employ an evolutionary algorithm to
predict the crystal structures starting from a series of chemical compositions
that were determined experimentally. We show that this method leads to
better structures than structural relaxation based on estimated initial structures.
We approximate the expected amorphous structures by reasonably large unit
cells that can accommodate local structural environments that resemble the
true amorphous structure. Our predicted structures show an insulator-to-metal
transition close to the experimental composition at which this transition is
actually observed and they also allow comparison with experimental electron
diffraction patterns.
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1. Introduction

Nanotechnological applications require the fabrication of nanometer-sized structures on various
substrates. Electron beam-induced deposition (EBID) has emerged as a promising technique
to make nanostructures in a size, shape and position-controlled manner without the use of
expensive masks [1–5]. Deposits with the desired metal content and electronic properties can be
obtained either directly by tuning the preparation conditions (varying the electron beam energy)
or by post-fabrication techniques (heating or further irradiation). Thus, fabrication of materials
with new physical and chemical properties at the nanoscale has been successfully achieved
[3, 5–10].

Transition metal carbides possess unique physical and chemical properties that have made
them promising materials in several industrial and electronic applications. The composition
of tungsten granular deposits obtained by decomposing W(CO)6 as a precursor in the EBID
process indicates that the tungsten atoms are embedded in a carbon (and oxygen) matrix [3].
Although investigations on the microstructure and the electrical transport properties have shed
some light on the behavior of these systems, a deep microscopic understanding is still missing.

Several theoretical studies are available on the structural and electronic properties of 4d
and 5d transition metal carbides [11, 12]. Nevertheless, studies on metal oxycarbides are scarce
due to the lack of knowledge about their structures. The high level of carbon and oxygen
concentrations up to an average of 30–40% in the EBID-fabricated samples indicates that a
good description of the electronic structure of these metal oxycarbides may be obtained by
suitably estimating approximate structures from the well-known crystal structures of tungsten
carbides and tungsten oxides. This methodology has indeed been successful in predicting the
structure of Pt2Si3 derived from Pt2Sn3 [13]. A similar procedure for tungsten oxycarbides has
been adapted by Suetin et al, who investigated the structure, electronic and magnetic properties
of some tungsten oxycarbides by constructing approximate crystal structures obtained from
systematically replacing the carbon by oxygen in the hexagonal structure of WC and oxygen
by carbon in the cubic structure WO3 [14]. However, a powerful evolutionary algorithm was
recently proposed, which, in principle, can predict the crystal structure of materials with any
atomic composition and is not biased by the choice of the initially known crystal structure
settings [15–17].

In this work, we use this evolutionary algorithm to predict structures of approximants
representing amorphous tungsten oxycarbides as obtained by the EBID process using periodic
boundary conditions (i.e. we simulate an amorphous compound with a crystalline system). By
analyzing the electronic properties of our predicted structures, we find an insulator-to-metal
transition at a composition close to the composition where experimentally such a transition
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Figure 1. Predicted structures for the tungsten oxycarbide WC0.5O0.5. Left:
the best structure obtained by relaxing estimated candidate structures. Right:
USPEX result. Colors used throughout this work are gray for carbon, red for
oxygen and turquoise for tungsten.

Table 1. EBID-obtained samples as reported in [6] and the corresponding
approximant used for the structure prediction. The concentrations are given in
atomic %. The composition of the approximants normalized to the tungsten
content is also listed.

Sample W C O Approximant Approximant
composition

1 19.0 67.1 13.8 W3C10O2 WC3.33O0.67

2 22.6 56.0 21.4 W2C5O2 WC2.5O
3 27.5 50.4 22.1 W4C7O3 WC1.75O0.75

4 31.8 44.4 23.8 W5C7O4 WC1.4O0.8

5 34.0 44.3 21.7 W3C4O2 WC1.33O0.67

6 36.9 35.6 27.5 W7C7O5 WCO0.71

has been observed [6]. We further show that the calculated electron diffraction patterns for our
structures correlate very well with the patterns measured experimentally [3, 6].

2. Method

We approximated the amorphous tungsten oxycarbides structures obtained in the EBID
process by large unit cells that can account for the local structural environment present
in the experimental compositions. In order to predict these structures, we employed the
Universal Structure Predictor: Evolutionary Xtallography package (USPEX) developed by
Oganov et al. This code is based on evolutionary algorithms and features local optimization,
real-space representation and flexible physically motivated variation operators [15–17]. Each
generation contained between 20 and 40 structures and the first generation was always

New Journal of Physics 14 (2012) 113028 (http://www.njp.org/)

http://www.njp.org/


4

Figure 2. Predicted tungsten oxycarbide structures for the compositions
WC3.33O0.67, WC2.5O and WC1.75O0.75.

produced randomly. Three different sets of calculation have been performed for each
composition with a differing number of initial populations and slightly varying the parameter
(fracPerm) that controls the percentage of structures obtained by heredity and permutation.
With all these different sets of calculation, about 2000 structures were screened for each
composition. All structures were locally optimized during structure search using density
functional theory with the projector augmented wave [18, 19] as implemented in the
Vienna ab initio simulation package (VASP) [19–22]. The generalized gradient approximation
(GGA) in the parametrization of Perdew et al [23] was used as an approximation for the
exchange and correlation functional. The reported structures are the ones with the lowest
enthalpy; the evolutionary algorithm was considered converged when the lowest enthalpy
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Figure 3. Predicted tungsten oxycarbide structures for the compositions
WC1.4O0.8, WC1.33O0.67 and WCO0.71.

structure could not be improved during eight generations2. We analyzed the electronic
structure of the resulting structures using the full potential local orbital (FPLO) basis [24].
The electron diffraction patterns were simulated by the Reflex module implemented in the
Materials Studio package.

3. Results and discussion

We first tested the method of evolutionary algorithm-based structure prediction using some
known tungsten structures. As an example, we verified that USPEX indeed predicts the known
hexagonal structure of WC [26]. Next, we address the problem of predicting crystalline tungsten
oxycarbides. This has recently been discussed by Suetin et al [14] for the examples WC1−xOx

and WC3−xOx . The authors successively replace carbon atoms in WC with oxygen and replace

2 We would like to note that by further improving the converge criteria of the generic algorithm, one could, in
principle, find even more stable structures. But we found that the used generic algorithm reproduces reasonably
well the experimental observations as shown below and is still computationally feasible.
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Figure 6. Electronic density of states of (a) the predicted structure of W2CO and
of the known crystalline structures of WO2 (b) and WC (c).

oxygen atoms in WO3 by carbon atoms and relax the resulting structure candidates using the full
potential linearized augmented plane wave basis set. We verified that the structure of WC0.5O0.5

with alternating layers of WC and WO (figure 1 (left)) is indeed the optimal structure also when
relaxing different structure candidates using VASP. We then performed an USPEX structure
prediction with the composition W2CO. This yields as optimum the structure shown in figure 1
(right). It is triclinic (P1 symmetry) and it is 1.35 eV per W2CO unit lower in energy than the
high-symmetry (P-6m2) structure obtained by relaxing structure candidates (figure 1 (left)).
This indicates that indeed it is preferable to avoid bias by using a structure search based on
evolutionary principles.

Figures 2 and 3 show the structures that we obtained. The samples with high carbon content
show inclusions of regions that resemble diamond-like carbon (sample 1) or graphitic carbon
(samples 2 and 4). This leads to a lower density as can be seen from figure 4 in which the density
of amorphous tungsten oxycarbide approximants is plotted against the metal content. On the one
hand, there is a weak overall proportionality of density with tungsten content, illustrated by the
line fitted to the six data points. On the other hand, samples 1, 2 and 4 fall into a lower density
group (WC3.33O0.67, WC2.5O and WC1.4O0.8, ρ ranges from 7.8 to 9.1 g cm−3), which shows
some phase separation between low carbon content tungsten oxycarbide and regions of pure
carbon, and a higher density group, samples 3, 5 and 6 (WC1.75O0.75, WC1.33O0.67 and WCO0.71,
ρ ranges from 10.0 to 10.7 g cm−3), which is more homogeneous and more highly coordinated.
By inspecting second best solutions which the evolutionary algorithm always provides, we find
that the overall trend of figure 4 is confirmed but densities carry an error of approximately
±0.5 g cm−3. Simulation of larger unit cells would be required to reduce this error.
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Figure 7. Band structures of the two insulating compounds WC3.33O0.67 (top)
and WC2.5O.

We now investigate the electronic structure of the predicted amorphous tungsten
oxycarbide approximants. We employ the FPLO basis [24] within GGA. Due to the large
mass of tungsten, we compared scalar relativistic and fully relativistic electronic structure
calculations. We find significant splittings due to spin–orbit coupling in all band structures, and
therefore in the following we base our analysis on fully relativistic calculations. Figure 5 shows
a comparison of the densities of states of the six materials with tungsten, carbon and oxygen
contributions shown in different colors. We immediately observe an insulator-to-metal transition
between sample 2 (WC2.5O) and sample 3 (WC1.75O0.75) which corresponds to a transition
between 22 and 29% metal content. This is in excellent agreement with the observation by
Huth et al [6] where the conductivity measurements on the six samples (see table 1) showed a
change from insulating to metallic behavior between samples 3 and 4. In fact, figure 2 of [6]
shows that sample 3 takes an intermediate position between clearly finite conductivity in the
T → 0 limit for sample 4 and clearly vanishing conductivity in the T → 0 limit for sample 2.

For comparison we present in figure 6 the densities of states for the predicted crystalline
structure of our test system W2CO as well as for the known structures of WO2 [25] and WC
[26]. We observe a qualitatively different behavior for the three structures.
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Figure 8. Band structures of the two metallic compounds WC1.75O0.75 (top) and
WC1.4O0.8. Compounds with higher relative tungsten content are also metallic.

In figures 7 and 8, we show the calculated band structures for the first four predicted
structures. Here, we can also clearly see the transition from insulating to metallic behavior
upon an increase of tungsten content as well as the splitting of the bands due to the
spin–orbit coupling. We also observe highly dispersive bands, which are a signature of the three
dimensionality of the systems.

In order to check how good our simulated structures describe the amorphous deposits, we
present in figures 9 and 10 the pair correlation functions of the first four predicted structures.
The pair correlation functions are used here to characterize the local environment around the
metal atoms. Experimentally, it is of course very difficult to measure pair correlation functions
for nanometer-sized deposits. However, our purpose here is to exploit the additional knowledge
we have from our microscopic simulations and to provide an estimate of the nature of the bonds
(i.e., W–C or W–O or W–W); this is a comment on the related discussion in the experimental
work of [27]. In figures 9 and 10, the contributions of bonds involving tungsten are highlighted.
The pair correlation function first shows carbon–carbon bonds at 1.4–1.5 Å, indicating that the
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Figure 9. Pair correlation functions of the compounds WC3.33O0.67 (top) and
WC2.5O.

matrix is composed of carbon atoms with sp2 and sp3 hybridization, which is in accordance with
the experimental evidence based on micro-Raman measurements on tungsten-based composites
obtained in the EBID process [27]. Further analysis indicates that at 2.0 Å, there are W–O bonds,
followed by W–C bonds at slightly larger distances. The first W–W bonds are seen at 2.6 Å.

Finally, we can compare our predicted structures with experiment by calculating the
electron diffraction patterns. Figure 11 shows the predicted electron diffraction patterns for
electrons with an energy of 300 keV. The experimental data shown in the figure are from [27].
Note that the experimental diffraction pattern has a large background that was not subtracted.
We find very good agreement between the main peak observed experimentally at 4 nm−1 and
the peaks in the predicted diffraction patterns. This peak corresponds to bond lengths of 2.5 Å
and should be related to tungsten bonds as the light elements contribute only insignificantly to
the electron diffraction intensity at 300 keV. Thus, we can relate the electron diffraction pattern
to the pair correlation functions of figures 9 and 10 and conclude that the W–W bonds most
likely cause the electron diffraction peak observed experimentally.
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4. Conclusions

By employing evolutionary algorithms we have predicted structures of approximants to EBID-
based amorphous tungsten oxycarbides. By analyzing the electronic structure, pair correlation
functions and diffraction patterns of our predicted structures for different compositions of W,
C and O, we find very good agreement with the experimental observations; an insulator-to-
metal transition is observed at a concentration close to the experimental concentration at which
this transition is reported and we explain the prominent peak observed in transmission electron
microscope based electron diffraction as caused by W–W bonds.

The use of genetic algorithms to predict and simulate amorphous nanodeposits opens the
possibility to understand the microscopic origin of the behavior of these systems. This has been,
up to now, very limited and mostly restricted to phenomenological models. With this tool at
hand, we believe that important progress can be made in this field.
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