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S.1 Crystal structure and magnetic structure determination of BaCoSiO4

Figure S1: a, Rietveld refinement results of neutron diffraction data collected at 10 K. Open red circles and solid black
line represent experimental and calculated intensities, respectively. Solid blue line at the bottom of the panel shows the
difference between them. The upper green tick marks stand for the positions of the Bragg reflections while the lower
marks denote the impurity phase Ba1.1CoO3 (weight fraction: 8.59(5)%). b, Schematic representation of the crystal
structure. The distorted CoO4 tetrahedron is emphasized by demonstrating the considerable off-center of the Co atoms. c,
Rietveld refinement of neutron diffraction data collected at 1.8 K using the magnetic space group P63. The black arrows
mark the magnetic reflections. d Enlarged figure c to present the refinement at low d-space. The gray arrows show the
unindexed contribution from impurity phases.

The structure of BaCoSiO4 measured by neutron powder diffraction at 10 K above TN has the space group P63,
consistent with the reported one from the single crystal X-ray diffraction at room temperature [?]. The Rietveld refine-
ment here adopts the reported crystal structure as a starting structural model [?]. Background was described by linear
interpolation of selected points in the pattern. The profile function of the powder time-of-flight neutron diffraction data
was described by a convolution of a pseudo-Voigt function with a pair of back-to-back exponential, implemented by the
FULLPROF SUITE program. The Rietveld refinement of the neutron diffraction pattern is shown in Fig. S1a and the
corresponding structural parameters are tabulated in Table S1. As shown in Fig. S1b, Co2+ ions are tetrahedrally co-
ordinated by oxygen forming spin trimers in the ab plane, which are bridged by the adjacent SiO4 tetrahedra. The spin
trimer layer is stacked alternately with the SiO4 tetrahedra layers along the c axis. The CoO4 tetrahedron is considerably
distorted with a large off-center of Co atoms and one relatively distant (Co-O4) bond (dCo-O4 = 1.994 Å) and three smaller
bond lengths (dCo-O1 = 1.946 Å, dCo-O2 = 1.944 Å, dCo-O3=1.938 Å).
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Figure S2: (Left) Single crystal x-ray diffraction pattern at 95 K showing the reflections in the a*c* plane. Red points
denote a few unindexed peaks. (Right) Observed and calculated intensity of the single crystal x-ray diffraction at 95 K.

To characterize the crystal, we have collected single crystal x-ray diffraction data at 95 K under N2 gas flow. With our
data collection strategy, we were able to index 99.09% of total 3734 sharp peaks (see figure S2). The as-grown crystal
has the P63 space group which is in agreement with the powder neutron results and the reported structure [?]. All refined
structural parameters are tabulated in Table S2 and the refinement of the structure is shown in Figure S2.

Table S1: The structure parameters of BaCoSiO4 measured at 10 K by powder neutron diffraction. The space group
is P63, a = 9.1124(1) Å, b = 9.1124(1) Å, c = 8.6447(2) Å, α = 90◦, β = 90◦, γ = 120◦. Rp = 4.62%.
RBragg = 10.5%. The atomic displacement parameter Biso is in 1/(8π2) Å2.

atom type x y z Biso

Ba1 Ba 0 0 0.250 0.22(4)
Ba2 Ba 1/3 2/3 0.2211(9) 0.07(7)
Ba3 Ba 2/3 1/3 0.221(1) 0.25(8)
Co1 Co 0.681(1) 0.676(1) 0.530(1) 0.8(1)
Si1 Si 0.660(8) -0.0125(7) 0.431(1) 0.35(6)
O1 O 0.7658(6) 0.9118(6) 0.5227(9) 0.48(6)
O2 O 0.4647(5) 0.9029(6) 0.4904(8) 0.28(4)
O3 O 0.7611(7) 0.1927(7) 0.447(1) 0.97(8)
O4 O 0.7245(5) 0.6545(6) 0.7513(9) 1.37(6)

Neutron powder diffraction data collected at 1.8 K using the central wavelength of 2.665 Å were used to determine the
magnetic structure without the magnetic field. The magnetic symmetry analysis was performed using the MAXMAGN
tool at the Bilbao Crystallographic Server. For a given propagation vector k = (1/3, 1/3, 0) and the parent grey group
P631′, there are only three k-maximal magnetic subgroups (P6′3, P63, P3) which were tested by comparing the neutron
data at 1.8 K. We found the magnetic space group P63 (No.173.129) that is compatible with a

√
3×
√
3 supercell provides

a satisfactory result with the agreement factors Rp = 5.66% and RBragg = 18.1%. The magnetic model as well as the
nuclear phase were refined using the FULLPROF SUITE program. The best refinement and the corresponding magnetic
configuration are shown in Fig. S1c and Fig. 2d, respectively. The power-law fit of the intensity of magnetic reflection
(2/3 2/3 0) (see main text) in the measured temperature range gives a way to extrapolate the intensity at zero temperature.
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Figure S3: Indexed peaks in the HKL space based on the zero-field single crystal neutron diffraction experiment at 1.5 K
in the MAG-B setup. White circles mark the magnetic reflections characterized by the propagation vector k = (1/3, 1/3,
0) while red circles denote three spurious reflections which may come from the half-lambda contamination.

Using the refined magnetic moment at 1.8 K, we can calculate the magnetic moment down to zero temperature. The
ordered magnetic moment as a function of temperature is shown in Fig. S4a.

The zero-field single crystal neutron diffraction data were collected in a cryomagnet which provides the vertical
magnetic field and temperature down to 1.5 K. The purpose of using this setup is to measure the field-dependent neutron
diffraction data with a magnetic field along the c axis. Due to the considerable background signals scattered from the
facility, the zero-field single crystal neutron diffraction data bear strong rings, as demonstrated in Figure S3. As shown in
the figure, we can clearly see the set of magnetic reflections described by the propagation vector k = (1/3, 1/3, 0), consistent
with the powder neutron diffraction results. Because of this complex sample environment, a decent data reduction for
the zero-field single crystal neutron data cannot be obtained precisely. We note that the single crystal neutron diffraction
data at 2 T can be reduced and corrected because the propagation vector of the field-induced phase is k = (0, 0, 0). The
idea is to scale the single crystal neutron data collected at zero field in the cryomagnet with respect to the corresponding
reflections from the powder neutron diffraction data. The zero-field single crystal neutron diffraction data are measured
with the same sample environment as those at 2 T. Thus, we could do the data reduction and correction of the neutron
data at 2T.

The determination of the magnetic structure under 2 T was done based on the single crystal neutron diffraction data
at 1.5 K with the field along the c axis using a similar procedure. Given the propagation vector k = 0 and the parent grey
space group, we found two k-maximal magnetic subgroups: P6′3 and P63. We performed refinement of the magnetic
model from the magnetic space group P63 which is compatible with the neutron diffraction data. Simply consider the
symmetry restriction, the former does not support a ferromagnetic component along the c axis, and can also be excluded.
Fig. S4b shows the comparison between the observed and calculated neutron diffraction reflections. The best refinement
gives the agreement factors χ2 = 16.4 and RF = 10.5% The corresponding schematic drawing of the magnetic structure
is shown in Fig. 2e.
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Figure S4: a, The square root of the intensity of magnetic reflection (2/3 2/3 0) and the calculated ordered magnetic
moment as a function of temperature. b, Observed and calculated intensity of the single crystal neutron diffraction at
1.5 K under 2 T. c, Enlarged figure b to show the low intensity neutron data. The error bars are used to show the standard
deviation given by the square-root of the number of neutron counts.

Table S2: The structure parameters of BaCoSiO4 measured at 95 K by single crystal x-ray diffraction. The space group
is P63, a = 9.1225(8) Å, b = 9.1225(8) Å, c = 8.6411(5) Å, α = 90◦, β = 90◦, γ = 120◦. Rp = 4.62%. The
atomic displacement parameter Biso is in 1/(8π2) Å2. Peak hunting yields 3734 peaks in which 99.09% of them were
successfully indexed with Rint = 0.03, χ2= 4.43.

atom x y z Biso

Ba1 0 0 0.25 0.2(1)
Ba2 1/3 2/3 0.221(2) 0.7(2)
Ba3 2/3 1/3 0.223(3) 0.6(2)
Si1 0.674(2) 0.009(3) 0.433(2) 0.3(1)
Co1 0.671(2) 0.683(1) 0.533(1) 0.7(2)
O1 0.768(5) 0.862(5) 0.516(6) 0.4(5)
O2 0.444(5) 0.908(5) 0.490(5) 1.4(7)
O3 0.815(5) 0.246(4) 0.439(4) 0.6(4)
O4 0.746(3) 0.683(4) 0.732(8) 2.8(5)
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Table S3: Observed and calculated intensities of the neutron reflections

.

HKL F2
obs F2

cal

0 1 0 224.1196 167.9725
0 2 0 185.4904 135.9625
1 1 0 109.1080 140.5491
-1 1 0 178.5917 167.9725
-1 1 -1 80.0961 107.6398
0 2 -1 119.7928 112.6918
2 1 0 267.3624 357.4929
2 2 0 262.2000 266.8279
2 3 -1 171.8046 229.4886
4 1 0 1423.1833 1649.9768
1 2 0 97.2676 174.3301
0 5 0 233.9305 232.6781
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S.2 Magnetization characterization

Figure S5: a, Temperature dependence of the magnetic susceptibility of BaCoSiO4 with the magnetic field (µ0H = 0.1 T)
along the c axis and in the ab plane. Inset shows the magnetic ordering temperature. b, Inverse magnetic susceptibility
curves and the corresponding fits using the Curie-Weiss law. c, The derivative of isothermal magnetization curves under
magnetic field up to 60 T at 1.5 K.
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S.3 Density functional theory calculations

Figure S6: a Band structure of BaCoSiO4 with 3d orbital character of one Co highlighted, calculated with FPLO basis
and GGA exchange correlation functional. b Tight binding fit of the 18 t2g bands in a. Bands and orbital character fits the
DFT result perfectly. c Tight binding parameters of the five nearest Co-Co distances. Labels indicate to which exchange
path the ti contribute. d Structure of BaCoSiO4 with the first five Co-Co exchange paths drawn as bonds. Bond cross
section is proportional to exchange coupling strength. e Co network with exchange paths as in d.

Electronic structure.- We calculated the electronic structure of BaCoSiO4 using the full potential local orbital (fplo)
basis [?] and generalized gradient approximation exchange and correlation functional [?]. Fig. S6a shows the 30 3d bands
arising from the six Co2+ ions in the unit cell, with 3d character of one of the ions highlighted. The local coordinate
system is chosen so that the Co-O bonds point into the corners of the cube spanned by the unit vectors. The eg bands are
below the t2g bands and separated from them by a small gap; the t2g bands are half-filled.

Tight binding model.- In order to get an impression which exchange paths might be important, we use projective
Wannier functions [?] to obtain a tight binding model for the Co t2g electrons. Bands from this model are shown in
Fig. S6b and perfectly match the DFT bands in dispersion and character. Hopping parameters for first five exchange paths
are shown in Fig. S6c. These five paths are shown as bonds in Fig. S6d and e. In-plane couplings Jt, J ′t and J ′′t form
triangles; inter-layer couplings Jz define zigzag chains along c, and inter-layer couplings Jc are chiral, with Jr

c defining a
right screw and J l

c a left screw; Jr
c and J l

c belong to the same distance dCo−Co = 5.250 Å but are symmetry inequivalent.
The TB parameters do not rapidly decrease with increasing distance, and the inter-layer hoppings (dCo−Co = 5.250 Å
and 5.411 Å labeled Jc and Jz) are not substantially smaller than the three in-plane hoppings. On the contrary, there is
a suggestion in these parameters that one in-plane coupling (Jt, dCo−Co = 5.113 Å) and one inter-layer coupling (Jz ,
dCo−Co = 5.411 Å) may play a more prominent role than the other exchange couplings. The conclusion from the tight
binding parameters is that it is crucial to calculate all five exchange couplings by energy mapping.
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Table S4: Exchange couplings of BaCoSiO4, calculated for a
√
2×
√
2×1 unit cell within GGA+U at JH = 0.84 eV and

4 × 4 × 4 k points. The last row contains the Co-Co distances which identify the exchange paths. The errors shown are
only the statistical error arising from the energy mapping. The interpolated U = 4.41 eV set of couplings (in bold face)
reproduces the (average) experimental Curie-Weiss temperature.

U (eV) Jt (K) J ′t (K) Jc (K) Jz (K) J ′′t (K) θCW (K)
3 3.48(1) 0.74(1) 0.50(1) 3.03(1) 0.27(1) -21.8

3.5 3.11(1) 0.64(1) 0.44(1) 2.64(1) 0.22(1) -19.2
4 2.80(1) 0.54(1) 0.38(1) 2.32(1) 0.19(1) -17.0

4.41 2.56(1) 0.49(1) 0.35(1) 2.09(1) 0.16(1) -15.4
4.5 2.51(1) 0.48(1) 0.35(1) 2.04(1) 0.15(1) -15.1
d (Å) 5.113 5.220 5.250 5.411 5.481

Table S5: Exchange couplings of BaCoSiO4, calculated for a
√
2 × 1 ×

√
2 unit cell within GGA+U at JH = 0.84 eV

and 4 × 4 × 4 k points for the room temperature structure. The last row contains the Co-Co distances which identify
the exchange paths. The errors shown are only the statistical error arising from the energy mapping. The interpolated
U = 4.37 eV set of couplings (in bold face) reproduces the (average) experimental Curie-Weiss temperature.

U (eV) Jt (K) J ′t (K) Jr
c (K) J l

c (K) Jz (K) J ′′t (K) θCW (K)
3 3.45(2) 0.73(3) 0.46(3) 0.62(3) 3.03(2) 0.28(3) -21.6

3.5 3.09(2) 0.62(3) 0.40(3) 0.55(3) 2.65(2) 0.24(3) -19.0
4 2.77(2) 0.54(2) 0.35(2) 0.50(2) 2.32(2) 0.20(2) -16.8

4.37 2.57(2) 0.49(2) 0.32(2) 0.46(2) 2.11(2) 0.17(2) -15.4
4.5 2.50(2) 0.47(2) 0.31(2) 0.45(2) 2.04(2) 0.16(2) -14.9
d (Å) 5.113 5.220 5.250 5.250 5.411 5.481

Energy mapping.- We now extract the Heisenberg Hamiltonian parameters of BaCoSiO4 using the energy mapping
technique [?]. We use two different supercells: With a

√
2×
√
2×1 cell for which the results are summarized in Table S4,

we can resolve exchange couplings up to dCo−Co = 9.270 Å and convince ourselves that only the first five paths shown in
Fig. S6e are relevant. Using a

√
2× 1×

√
2 supercell, with results reported in Table S5, we are able to separate the left-

winding and right-winding chiral couplings Jr
c and J l

c. For the first supercell, the 12 independent Co2+ moments in P 1
symmetry allow for 460 unique energies of different configurations; we randomly choose 39 of these spin configurations
and obtain an excellent fit to the Heisenberg Hamiltonian in the form

H =
∑
i<j

JijSi · Sj (S1)

Total moments are exact multiples of 3 µB as all Co2+ moments are S = 3/2. In Table S4, the values of the Ji are given
with respect to spin operators of length S = 3/2. Please note that if the Hamiltonian is written as

∑
ij counting every

bond twice, the Ji need to be divided by two. Besides the five couplings shown in Table S4, we find negligibly small
longer range couplings J6 = 0.01(1)K (dCo−Co = 7.328 Å), J7 = 0.05(1)K (dCo−Co = 7.549 Å), J9 = 0.00(1)K
(dCo−Co = 8.963 Å), J10 = 0.00(1)K (dCo−Co = 9.084 Å), J11 = 0.03(1)K (dCo−Co = 9.126 Å), J12 = 0.00(1)K
(dCo−Co = 9.237 Å), J13 = −0.01(1)K (dCo−Co = 9.270 Å). The Curie-Weiss temperature estimates are obtained from

θCW =− 2

3
S(S + 1)

(
J1 + J2 + 2J3 + J4 + J5 + J6 + 2J7 + J9 + 2J10 + 3J11 + 2J12 + J13

)
(S2)

where S = 3/2. The U value is determined by demanding that the couplings reproduce the experimental Curie-Weiss
temperature. From fits to the inverse susceptibility, we have θCW = −10(2)K for H ‖ ab and θCW = −26.2(4)K for
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H ‖ c. As approximate energy scale, we use a weighted average of these two values, θCW = −15.4K. The corresponding
interpolated set of exchange couplings is given in Table S4 in bold face.

For the second supercell (
√
2 × 1 ×

√
2), the 12 independent Co2+ moments in P 1 symmetry lead to 195 spin

configurations with distinct energies out of which we use 38 for the energy mapping. Besides the six couplings given in
Table S5, we obtained negligibly small J8 = 0.05(1)K (dCo−Co = 8.683 Å) and J14 = 0.01(1)K (dCo−Co = 10.076 Å).
The two chiral couplings Jr

c and J l
c turn out to be substantially different, with Jr

c 50% larger than J l
c.

Fully relativistic calculations.- We use collinear relativistic DFT calculations to estimate the single ion anisotropy
ESIA = AS2

z . In order to separate ESIA from anisotropic exchange, we calculated total energies for three different spin
configurations for the six Co ions in the unit cell: a) FM (ferromagnetic). b) TAFM (one Jt triangle up, one Jt triangle
down). c) STRIPY (up-up-down in one Jt triangle, up-down-down in the other). We calculated energies for moments
m ‖ x, m ‖ y, and m ‖ z; the first two energies are the same, the third is higher.We use both plain GGA+SO calculations
and GGA+SO+U with U = 4 eV (the value we know to describe the material correctly). The single ion anisotropy energy
estimates are listed in Table S6. The fact that the dependence on spin configuration is small (only about 10% variation)
indicates that anisotropic exchange is not strong.

Table S6: Estimates of single ion anisotropy energies A for three spin configurations.

AFM (K) ATAFM (K) ASTRIPY (K)
GGA+SO 1.85 1.85 1.82

GGA+SO+U (U = 4 eV) 2.38 2.14
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S.4 Theoretical modeling

Consider one triangle with three spins coupled by the DM interactions that respect the 3-fold rotation symmetry. The total
energy is given by Etot

DMI = (S1×S2) ·D3+(S2×S3) ·D1+(S3×S1) ·D2, where spins {Si, i = 1, 2, 3} are numbered
counterclockwise on the triangle, and Di is the DM vector on the opposite edge of Si. The energy associated with the
out-of-plane component of the DM vectors is Ez

DMI = Dz ẑ · (S1 × S2 + S2 × S3 + S3 × S1) ≡ Dzẑ · ε, where ε is the
vector spin chirality. This term always favors coplanar spin configurations, for which |ẑ · ε| is maximized (Fig. S7).

Figure S7: Minimal energy configuration for Dz < 0 (Left) and Dz > 0 (Right). A uniform rotation applied to all spins
does not change energy.

Figure S8: Energy per spin for each of the terms in the Hamiltonian as a function of rotation angle.

Focusing on spin configurations with the 3-fold rotation symmetry, we derive the total DMI energy with a spin and
the DM vector on its opposite edge written in the same local frame, Vi = Vzẑ+ V⊥(−r̂i) + V‖ẑ× (−r̂i) where V ≡ S
or D [Fig. 3a], and r̂i is the unit vector from the center of the triangle pointing to site i. The result is

Etot
DMI =

3

2

√
3Dz

(
S2
‖ + S2

⊥

)
+ 3
√
3Sz(D‖S‖ +D⊥S⊥) ≡

3

2

√
3Dz|Sxy|2 + 3

√
3SzSxy ·Dxy , (S3)
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where Sxy = (S⊥, S‖) with the Si component parallel to radius-vector ri as S‖ and that perpendicular to it S⊥, and
Dxy = (D⊥, D‖). Other relevant physical quantities can be calculated: toroidal moment t=

∑
i ri × Si = 3S⊥ẑ; vector

spin chirality ε=S1 × S2 + S2 × S3 + S3 × S1 =
3
√
3

2 S2
xyẑ; scalar spin chirality κ=(S1 × S2) · S3 = |ε|Sz .

To understand the role played by the subleading interactions, we start with the energy-minimized ferritoroidal structure
in zero field, continuously rotate along the c-axis all spins on the sublattice with toroidal moment opposite to the net
moment and plot the energy of each term in the Hamiltonian as a function of rotation angle in Fig. S8. The left panel
shows the total energy (black), the energy of Jt bonds (red) and that of Jz (blue). Since the global rotation occurs within
one of Jt-Jz sublattices, the energy of these two bonds stays the same. The right panel of Fig. S8 shows the energy of all
subleading interactions. It is evident that the Jc term favors the ferritoroidal state, while J ′t and J ′′t favors the ferrotoroidal
one.
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