Universität des Saarlandes Naturwissenschaftlich-Technische Fakultät II Physik und Mechatronik

Fachrichtung 7.1-Theoretische Physik

Dr. Harald O. Jeschke Gebäude E 2 6, Zi. 4.21 Tel. (0681) 302 57409

Saarbrücken, 10.01.2008

Übungen zur Theoretischen Physik I, WS 2007/08

10.Übung

(Abgabe Donnerstag, 17.01.2008 in der Vorlesung)

Aufgabe 35 (10 Punkte)

Lagrangefunktion im beschleunigten Bezugssystem

Gegeben sei die Lagrange-Funktion

$$L_0(\vec{r}_0, \dot{\vec{r}}_0) = \frac{m}{2} \dot{\vec{r}}_0^2 - U(\vec{r}_0)$$

eines Teilchens in einem äußeren Feld $U(\vec{r}_0)$ in dem ruhenden Koordinatensystem Σ_0 .

- a) Bestimmen Sie die Lagrange-Funktion $L_1(\vec{r}_1, \dot{\vec{r}}_1)$, die sich durch Transformation auf ein bewegtes, nicht rotierendes Koordinatensystem Σ_1 ergibt, welches aus Σ_0 durch die Transformation $\vec{r}_0 = \vec{r}_s(t) + \vec{r}_1$ hervorgeht.

 Hinweis: Formen Sie die Terme, in denen $\dot{\vec{r}}_1(t)$ auftritt, zu totalen zeitlichen Differentialen um. Welchen Einfluss haben diese Ausdrücke auf die Variation des Wirkungsintegrals?
- b) Bestimmen Sie die Lagrange-Funktion $L(\vec{r}, \dot{\vec{r}})$, die aus $L_1(\vec{r}_1, \dot{\vec{r}})$ durch Transformation von Σ_1 auf ein mit der zeitabhängigen Winkelgeschwindigkeit $\Omega(t)$ rotierendes Koordinatensystem Σ hervorgeht, das den selben Ursprung wie Σ_1 besitzt.
- c) Leiten Sie die Bewegungsgleichungen für das Teilchen in dem Koordinatensystem Σ aus $L(\vec{r}, \dot{\vec{r}})$ ab.

Hinweis: Das Prinzip der kleinsten Wirkung gilt immer, unabhängig vom Bewegungszustand des Bezugssystems.

Um $\frac{\partial L}{\partial \vec{r}}$ und $\frac{\partial L}{\partial \vec{r}}$ zu berechnen, bestimmen Sie zunächst das totale Differential

$$dL = \frac{\partial L}{\partial \dot{\vec{r}}} \cdot d\dot{\vec{r}} + \frac{\partial L}{\partial \vec{r}} \cdot d\vec{r}$$

Aufgabe 36 (10 Punkte)

Eulerwinkel

Eine Drehung um die Eulerschen Winkel ψ, ϑ, ϕ lässt sich definieren durch die Operation

$$R(\psi, \vartheta, \varphi) = R_3(\psi) R_1(\vartheta) R_3(\varphi)$$

Dabei bedeute etwa $R_3(\phi)$ eine Drehung um die 3. Achse um den Winkel ϕ im mathematisch positiven Sinn. Leiten Sie unter Benutzung des Zusammenhangs

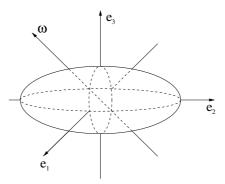
$$\dot{R}R^T\vec{x} = \vec{\omega} \times \vec{x}$$

für beliebige $\mathbf{x} \in \mathbb{R}^3$ her, wie sich die Komponenten der Winkelgeschwindigkeit durch die Eulerschen Winkel und ihre zeitlichen Ableitungen ausdrücken lassen.

Aufgabe 37 (10 Punkte) Rotierendes Ellipsoid

Gegeben sei ein homogenes 3-achsiges Ellipsoid der Masse \mathfrak{m} mit den Hauptachsen \vec{e}_1 , \vec{e}_2 , \vec{e}_3 und den zugehörigen Halbachsen \mathfrak{a} , \mathfrak{b} und \mathfrak{c} .

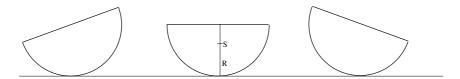
- a) Berechnen Sie die Hauptträgheitsmomente (bezüglich des Schwerpunktes) und geben Sie den Trägheitstensor Θ im Hauptachsensystem an.
- b) Das Ellipsoid rotiere nun mit konstanter Winkelgeschwindigkeit $\vec{\omega}$ um eine feste Achse, die um 45° gegen \vec{e}_3 geneigt ist und in der \vec{e}_2 - \vec{e}_3 -Ebene liegt. Berechnen Sie mit den Euler-Gleichungen das dabei auf das Ellipsoid wirkende Drehmoment $\stackrel{\rightarrow}{\mathcal{M}}$.



Aufgabe 38 (15 Punkte)

Schwingung einer Halbkugel

Eine homogene, massive Halbkugel vom Radius R liege auf einer waagerechten Unterlage. Es soll die Frequenz der Schaukelbewegung, die sie unter dem Einfluss der Schwerkraft ausführt, berechnet werden.



- a) Berechnen Sie dazu zunächst die Lage des Schwerpunktes der Halbkugel.
- b) Wie groß ist das Trägheitsmoment der Halbkugel für die zu untersuchende Schwingung? (*Hinweis:* Satz von Steiner.)
- c) Stellen Sie die Lagrangefunktion und die Bewegungsgleichungen für kleine Auslenkungen aus der Ruhelage auf.
- d) Wie groß ist also die gesuchte Schwingungsfrequenz?