Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Dr. Yuzhong Zhang Dr. Hunpyo Lee



Frankfurt, Dec. 16, 2009

Theoretikum zur Einführung in die Theoretische Festkörperphysik WS2009/10

## Exercise Set 9

(Due date: Tuesday, January 12, 2010)

## Exercise 19 (Kronig Penney model in tight binding approximation) (20 points)

Solve the Kronig Penney model from Exercise 17 in tight binding approximation.

- a) First solve the "atomic problem" (only a single attractive delta potential) exactly.
- b) Now calculate the overlap matrix elements of the "atomic" wave functions of the bound state explicitly. Compare the result for the bandstructure with the exact result from Exercise 17.

## Exercise 20 (Tight binding approximation and van-Hove singularities) (15 points)

- a) Calculate the energy dispersion  $\varepsilon(\vec{k})$  in tight binding approximation, considering hopping only between nearest neighbors for
  - a body centered cubic (bcc) lattice with primitive vectors

$$\vec{\mathfrak{a}}_1 = \frac{\mathfrak{a}}{2} \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \ \vec{\mathfrak{a}}_2 = \frac{\mathfrak{a}}{2} \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \ \vec{\mathfrak{a}}_3 = \frac{\mathfrak{a}}{2} \begin{pmatrix} 1\\1\\-1 \end{pmatrix},$$

where a is the lattice constant, and

• a face centered cubic (fcc) lattice with primitive vectors

$$\vec{\mathfrak{a}}_1 = \frac{\mathfrak{a}}{2} \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \ \vec{\mathfrak{a}}_2 = \frac{\mathfrak{a}}{2} \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ \vec{\mathfrak{a}}_3 = \frac{\mathfrak{a}}{2} \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

b) The density of states can be written, as in the case of the phonon density of states, as a surface integral over surfaces of constant  $\varepsilon$ :

$$\rho(\varepsilon) = \frac{1}{N} \sum_{n\vec{k}} \delta\left(\varepsilon - \varepsilon_n(\vec{k})\right) = \frac{V}{N} \frac{1}{4\pi^3} \sum_n \int_{S(\varepsilon)} \frac{ds}{\left|\nabla_{\vec{k}} \varepsilon_n(\vec{k})\right|},$$

where  $S(\varepsilon)$  is the surface in  $\vec{k}$  space that is defined by  $\varepsilon = \varepsilon(\vec{k})$ , and ds is the corresponding surface element. For energies for which the dispersion relations  $\varepsilon_n(\vec{k})$  have a horizontal tangent, *i.e.* they fulfil  $\nabla_{\vec{k}}\varepsilon_n(\vec{k}) = 0$ , singularities called van-Hove singularities appear in the density of states. Consider the dispersion relations for the nearest neighbor tight binding model determined in a). At which energies do you expect van-Hove singularities?