Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Dr. Yuzhong Zhang Dr. Hunpyo Lee

Frankfurt, Nov. 25, 2009

Theoretikum zur Einführung in die Theoretische Festkörperphysik WS2009/10

Exercise Set 6

(Due date: Tuesday, December 1, 2009)

Exercise 13 (Debye model) (10 points)

Consider a two-dimensional square lattice with one atom of mass m per lattice point interacting with only nearest neighbors with force constant K. The phonon dispersion curve is given by

$$\omega_{\mathbf{q}} = \sqrt{\frac{4\mathsf{K}}{\mathsf{m}}} \sin\left(\frac{\mathsf{q}\mathfrak{a}}{2}\right)$$

a) In the long-wavelength limit, obtain the phonon density of states $D(\omega) = dN/d\omega$.

Hint: On the 2D lattice, you can find the Debye wave number q_D by considering a Debye circle instead of a Debye sphere.

b) For high temperature $(k_B T \gg \hbar \omega)$, calculate the internal energy.

Exercise 14 (Specific heat) (10 points)

The density of modes of a monoatomic crystalline solid is given by

$$\mathsf{D}(\boldsymbol{\omega}) = \frac{3\mathsf{V}}{2\pi^2\mathsf{c}_0^3}\boldsymbol{\omega}^2\,,$$

where c_0 is the speed of sound in the crystal and V is the volume. What is the specific heat of the monoatomic crystalline solid at high temperature?

Exercise 15 (Quantum corrections) (10 points)

Determine the most important quantum corrections to the Dulong-Petit law by calculating the high temperature expansions of the internal energy and the specific heat up to terms proportional to 1/T and $1/T^2$, respectively.