Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Dr. Yuzhong Zhang Dr. Hunpyo Lee

Frankfurt, Nov. 4, 2009

Theoretikum zur Einführung in die Theoretische Festkörperphysik
 WS 2009/10

Exercise Set 3

(Due date: Tuesday, November. 10, 2009)

Exercise 7 (Cubic symmetry and electrical conductivity) (15 points)

All physical observables must be invariant under all elements of the crystal symmetries. Consider the electrical conductivity tensor $\hat{\sigma}(\vec{q})$

$$j_{\mathfrak{i}}(\vec{q}) = \sum_{\mathfrak{j}} \sigma_{\mathfrak{i}\mathfrak{j}}(\vec{q}) E_{\mathfrak{j}}(\vec{q})$$

with wave vector \vec{q} (i, j label directions in space, for a cubic lattice i, j = x, y, z). The usual conductivity is measured for $\vec{q} = 0$. $\hat{\sigma}(\vec{q})$ has the symmetry of the space group, $\hat{\sigma}(\vec{q} = 0)$ the symmetry of the point group:

 $D^{-1}\hat{\sigma}D=\hat{\sigma}$

Show that for cubic symmetry, the nine different entries σ_{ij} are given by a single electrical conductivity value σ :

(1) $\hat{\sigma} = \sigma \mathbb{1}$

Hint: Use some of the 48 point group symmetry elements, starting with rotations around 2-fold axes that lead to simple matrices D and D^{-1} .

Exercise 8 (Born-Oppenheimer approximation) (20 points)

Consider the following Hamiltonian for two coupled one dimensional harmonic oscillators:

(2)
$$H = \frac{p^2}{2m} + \frac{P^2}{2M} + \frac{kx^2}{2} + \frac{KX^2}{2} + \lambda xX$$

with $[x,p] = i\hbar$, $[X,P] = i\hbar$ and $M \gg m$.

a) Show that the stationary Schrödinger equation

$$\mathsf{H}\psi(\mathsf{x},\mathsf{X})=\mathsf{E}\psi(\mathsf{x},\mathsf{X})$$

has the following eigenvalues,

$$\mathsf{E}_{\mathfrak{n},\mathsf{N}} = \hbar \omega_{+} \left(\mathfrak{n} + \frac{1}{2} \right) + \hbar \omega_{-} \left(\mathsf{N} + \frac{1}{2} \right),$$

where n, N = 0, 1, 2, ... and

$$\omega_{\pm}^{2} = \frac{1}{2} \left(\frac{k}{m} + \frac{K}{M} \right) \pm \sqrt{\frac{1}{4} \left(\frac{k}{m} - \frac{K}{M} \right)^{2} + \frac{\lambda^{2}}{mM}}$$

What happens for $\lambda = 0$?

Hint: Use a coordinate transform $p_1 = \frac{p}{\sqrt{m}}$, $p_2 = \frac{P}{\sqrt{M}}$, $y_1 = \sqrt{m}x$, $y_2 = \sqrt{M}X$ to obtain an equation

$$\mathsf{H} = \frac{1}{2} \left(\vec{\mathsf{p}}^2 + \vec{\mathsf{y}}^{\mathrm{T}} \mathsf{D} \vec{\mathsf{y}} \right)$$

in terms of $\vec{p} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ and $\vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, then do a coordinate rotation that diagonalizes D to obtain two independent oscillators.

b) Calculate $\mathsf{E}_{n,N}$ also in Born-Oppenheimer (or adiabatic) approximation. Write the eigenvalues in adiabatic approximation as

$$\mathsf{E}_{n,\mathsf{N}}^{\mathrm{adiabatic}} = \hbar \omega_0 \left(n + rac{1}{2}
ight) + \hbar \Omega_0 \left(\mathsf{N} + rac{1}{2}
ight),$$

and compare with the exact solution.