Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Dr. Yuzhong Zhang Dr. Hunpyo Lee



Frankfurt, Jan. 27, 2010

Theoretikum zur Einführung in die Theoretische Festkörperphysik<br/> WS 2009/10

## Exercise Set 12

(Due date: Tuesday, February 2, 2010)

## **Exercise 24** (Extrinsic semiconductors) (15 points)

Due to doping with  $N_d$  donor atoms, donor levels appear in a seminconductor density of states that can be empty or singly occupied, and the average number of electrons is given by

(1) 
$$n_d = \frac{N_d}{\frac{1}{2}e^{\beta(E_d - \mu)} + 1}$$

where  $\beta = (k_B T)^{-1}$ .

(a) Show that if the energy of a doubly occupied donor level is taken to be  $2E_d+U$ , then Eq. (1) must be replaced by

(2) 
$$n_{d} = N_{d} \frac{1 + e^{-\beta(E_{d} - \mu + U)}}{\frac{1}{2}e^{\beta(E_{d} - \mu)} + 1 + \frac{1}{2}e^{-\beta(E_{d} - \mu + U)}}$$

- (b) Verify that Eq. (2) reduces to Eq. (1) as  $U \to \infty$  which means that double occupancy becomes forbidden.
- (c) Consider a donor impurity with many bound electronic orbital levels, with energy  $E_i$ . Assuming that the electron-electron Coulomb repulsion prohibits more than a single electron from being bound to the impurity, show that the appropriate generalization of Eq.(1) is

(3) 
$$\frac{N_d}{1 + \frac{1}{2} (\sum e^{-\beta(E_i - \mu)})^{-1}}.$$

## **Exercise 25** (Slater determinant) (15 points)

Consider Fermi creation operators  $c_k^{\dagger}$  for states with the wave function

$$\langle \mathbf{r} | \mathbf{k} \rangle = \langle 0 | \mathbf{c}_{\mathbf{r}} \mathbf{c}_{\mathbf{k}}^{\dagger} | 0 \rangle \equiv \Phi_{\mathbf{k}}(\mathbf{r}) \,.$$

Calculate explicitly the Slater determinant  $\langle r_1,r_2,r_3|k_1,k_2,k_3\rangle$  for three electrons. Here,

$$c_k^{\dagger} = \sum_{r_i} e^{ikr_i} c_{r_i}^{\dagger}$$

and

$$\langle \mathsf{r}_1, \mathsf{r}_2, \mathsf{r}_3 | \mathsf{k}_1, \mathsf{k}_2, \mathsf{k}_3 
angle = \langle 0 | \mathsf{c}_{\mathsf{r}_1} \mathsf{c}_{\mathsf{r}_2} \mathsf{c}_{\mathsf{r}_3} \mathsf{c}_{\mathsf{k}_1}^\dagger \mathsf{c}_{\mathsf{k}_2}^\dagger \mathsf{c}_{\mathsf{k}_3}^\dagger | 0 
angle \,.$$