Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Dr. Yuzhong Zhang Dr. Hunpyo Lee

Frankfurt, Jan. 20, 2010

Theoretikum zur Einführung in die Theoretische Festkörperphysik
 WS 2009/10

Exercise Set 11

(Due date: Tuesday, January 26, 2010)

Exercise 22 (Free electron gas in two dimensions) (15 points)

- a) Show that in two dimensions the free electron density of states $\rho(E)$ is a constant independent of E for E > 0 and 0 for E < 0. What is the constant?
- b) Show that because $\rho(E)$ is constant, every term in the Sommerfeld expansion for Z_e except the T = 0 term vanishes. Deduce that $\mu = E_F$ at any temperature.
- c) Deduce from

$$Z_e = \int_{-\infty}^{\infty} dE \, \rho(E) f(E)$$

that for the constant $\rho(E)$ of a)

$$\mu + k_{\rm B} T \ln \left(1 + e^{-\frac{\mu}{k_{\rm B} T}}\right) = E_{\rm F}$$

How much does μ differ from E_F at low temperature? What does that mean for the Sommerfeld expansion?

Exercise 23 (Electrons in copper) (15 points)

Determine for the metal copper the fraction of electrons whose energy at room temperature is larger than $E_F - 2k_BT$.

Hint: The Fermi temperature for copper is

$$\mathsf{T}_{\mathsf{F}} = \frac{\mathsf{E}_{\mathsf{F}}}{\mathsf{k}_{\mathrm{B}}} = 8.1 \cdot 10^4 \; \mathrm{K} \, \mathrm{.}$$

For $T \ll T_F$ the Fermi function is approximately a Heaviside function

$$f(E,T\ll T_F)=\theta(E-E_F)\,.$$

The derivative of a Heaviside function is a Dirac delta function:

$$f'(E,T\ll T_F)=-\delta(E-E_F)\,.$$