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Overview Topics

List of topics

General numerical methods

1 Numerical integration

2 Polynomial and spline interpolation

3 Minimization: Conjugate gradient, genetic algorithms

4 Solving integral equations

5 Numerical differentiation

6 Differential equations: Finite difference

7 Differential equations: Finite elements

8 Eigenvalue problems

Methods of Theoretical Physics

1 Exact Diagonalization

2 Monte Carlo

3 Quantum Monte Carlo
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Overview Why numerical methods?

Motivation

Evaluation of theoretical models: Many theoretical approaches
involve a numerical evaluation of resulting equations as a final step.
This is not a trivial part: Success of a theory often depends crucially
on the feasibility of its numerical evaluation.

Making contact to real materials: Nearly all measurable quantities
in real materials are off limits for analytical computation. If you want
to compare a theory to experiment, numerical methods are needed to
account for the complexity of chemical interactions, real lattice
structures, interplay of various phenomena present at the same time,
and so on.

Introducing computational physics: This area of physics is of
growing importance as computers become more powerful and as more
and more nontrivial aspects of experiment and technology can be
computed or simulated, yet it is hardly mentioned in physics classes.
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Overview Why numerical methods?

My perspective

Fields of research Methods I use

Tight binding molecular dynam-
ics on time dependent potential
energy surfaces

Matrix diagonalization
Integration of differential equa-
tions
Fast Fourier transform

Dynamical mean field theory for
lattice models (Hubbard, Ander-
son)

Integral equations
Splines
Exact diagonalization

Ab initio density functional theory Minimization techniques
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Numerical integration Uses and limitations

Numerical integration: Introduction I

A function f that is continous in an interval Ix has antiderivatives F that
only differ by a constant, and

dF (x)

dx
= F ′(x) = f (x), x ∈ Ix (1)

The number I (f : α, β) is called the definite integral of f over [α, β], and
we have the Fundamental Theorem of Calculus:

I (f : α, β) :=

∫ β

α
dx f (x) = F (β)− F (α), [α, β] ∈ Ix , (2)

then f is called integrable in [α, β].
In practice, many integrals I (f : α, β) need to be calculated
approximatively by socalled quadrature formulas.
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Numerical integration Uses and limitations

Numerical integration: Introduction II

The reason for the need of numerical integration can be

f has an antiderivative F that cannot be represented in closed form
(for example f (x) = e−x2

).

f is only known on a discrete mesh xk ∈ [α, β].

The determination of the antiderivative is too involved.

Multidimensional integrals.

Integrating numerically becomes very important in the solution of
differential equations.
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Numerical integration Uses and limitations

Numerical integration: Introduction III

Consider finding the
area under a
reasonably smooth
curve f(x) in the
interval [α, β]. It is
tempting to sample
the function at regular
intervals with
uniformly spaced
ordinates:

f(x)

α β
x

f(x)

α β
x
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Numerical integration Uses and limitations

Numerical integration: Introduction IV

We could evaluate the area for a number n of ordinates, then cut each
interval in half by adding n − 1 additional ordinates and evaluate again,
until we reach the desired accuracy.

The most common assumption is that f (x) can be well represented by
a polynomial of some degree if only we go high enough in the degree.

This is equivalent to saying that f (x) has a good Taylor’s series
expansion almost everywhere, but in reality that is far from
guaranteed!

One should remember that no polynomial has an asymptote, neither a
horizontal nor a vertical one!
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Numerical integration Integration on equidistant meshes

Integration on equidistant meshes: Trapezoid rule I

To obtain the simplest quadrature formulas, we can write the quadrature
in the form

I ≈
N∑

i=0

Wi fi (3)

with evaluation points xi , fi = f (xi ), Wi is the weight of the i-th point,
and we evaluate at N + 1 points. Thus, the simplest formula is

I ≈W0f0 + W1f1 (4)

where x0 = α and x1 = β are the limits of integration.
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Numerical integration Integration on equidistant meshes

Trapezoid rule II

For the approximation to be useful, we require it to be exact for the
simplest integrands, f (x) = 1 and f (x) = x . As these are the first terms of
a Taylor’s series, this approximation will converge to the exact result as
the integration region is made smaller, for any f (x) that has a Taylor
series expansion. Thus, we require that

∫ x1

x0

dx 1 = x1 − x0
!

= W0 + W1 and (5)∫ x1

x0

dx x =
x2

1 − x2
0

2
!

= W0x0 + W1x1 (6)

This gives us two equations for the two unknown weights, and thus

W0 = W1 =
x1 − x0

2
(7)
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Numerical integration Integration on equidistant meshes

Trapezoid rule III

With this, we arrive at the trapezoid rule given by∫ x1

x0

dx f (x) ≈ h

2
(f0 + f1) (8)

where h = β − α. Displaying also Lagrange’s expression for the remainder
term in the Taylor series expansion, we have∫ x1

x0

dx f (x) =
h

2
(f0 + f1)− h3

12
f (2)(ξ) , (9)

where ξ is some point within the region of integration.
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Numerical integration Integration on equidistant meshes

Simpson’s rule

To derive the next higher integration rule for N = 2, we write∫ x2

x0

dx 1 = x2 − x0
!

= W0 + W1 + W2 , (10)∫ x1

x0

dx x =
x2

2 − x2
0

2
!

= W0x0 + W1x1 + W2x2 and (11)∫ x1

x0

dx x2 =
x3

2 − x3
0

3
!

= W0x2
0 + W1x2

1 + W2x2
2 (12)

Solving for the weights, we find Simpson’s rule∫ x1

x0

dx f (x) =
h

3
(f0 + 4f1 + f2)− h5

90
f (4)(ξ) , (13)
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Numerical integration Integration on non-equidistant meshes

Non-equidistant mesh integration: Gaussian Quadrature

We can give up equal spacing of the ordinates and choose the location of
the ordinates so as to optimize the estimation of the area (still assuming
the integrand is well represented by a polynomial). This method is called
Gaussian quadrature. The best locations for the ordinates turn out to be
the roots of the Legendre polynomial of appropriate degree. If the region
of integration is normalized to span [−1,+1] the simplest of the Gaussian
quadrature rules are (xi is the abscissa and yi the corresponding ordinate):

G2 = y−1 + y1 with x±1 = ±0.57735

G3 = 0.88889y0 + 0.55556(y−1 + y1)

with x0 = 0, x±1 = ±0.77460

G4 = 0.65215(y−1 + y1) + 0.03485(y−2 + y2)

with x±1 = ±0.33998, x±2 = ±0.86114

G5 = 0.56889y0 + 0.47863(y−1 + y1) + 0.23693(y−2 + y2)

with x0 = 0, x±1 = ±0.0.53847, x±2 = ±0.90618

(14)
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Numerical integration Integration on non-equidistant meshes

Gaussian Quadrature

A general interval [α, β] can be transformed to the interval [−1,+1] by
the transformation t = (2x − a− b)/(b − a):∫ β

α
dx f (x) =

∫ 1

−1
dt f

((β − α)t + β + α

2

)b − a

2
(15)

leading to the Gaussian quadrature formula∫ β

α
dx f (x) =

b − a

2

n∑
j=1

cn,j f
((β − α)rn,j + β + α

2

)
(16)

Further methods:
Richardson extrapolation
Adaptive quadrature schemes
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Numerical integration Integration on non-equidistant meshes

Practice: Use of numerical libraries

Numerical recipes: Books in Fortran77, Fortran 90 and C available
online, e.g.
http://www.library.cornell.edu/nr/cbookcpdf.html
But only the simplest algorithms (implementations fitting on a book
page) are included (no adaptive integration).

IMSL (International Mathematical and Statistical Library). Very
large, but commercial:
http://www.absoft.com/Products/Libraries/imsl.html

NAG (Numerical Algorithms Group). Very large, available in
Fortran77, Fortran90 and C, also commercial, but often available in
universities. Full documentation available online (free). See
http://www.nag.co.uk/
NAG is installed on the CSC (Center for Scientific Computing,
Frankfurt).
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Interpolation Introduction

Interpolation

Interpolation is a way to approximate a function that is only given at a
finite number of supporting points between these supports. In contrast to
curve fitting, interpolating functions are exact at the supporting points.
Interpolation can be important for a number of purposes:

If calculation of a function is computationally expensive so that only a
limited number of evaluations are possible.

For the calculation of integrals or derivatives of a function that is only
available on a mesh.

For the construction of smooth and flexible shapes in computer
graphics.
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Interpolation Lagrange polynomials

Lagrange polynomials I

If a function is known at several points, it can be interpolated following a
method of Lagrange. Lagrange’s interpolating polynomial p(x) can be
derived from a Taylor’s series at the supporting points, e.g. x1 and x2:

f (x1) = f (x) + (x1 − x)f ′(x) + . . . , (17)

f (x2) = f (x) + (x2 − x)f ′(x) + . . . . (18)

Truncating at the first order compromises the equality, so we introduce an
approximate function p(x):

f (x1) = p(x) + (x1 − x)p′(x) , (19)

f (x2) = p(x) + (x2 − x)p′(x) . (20)

This gives us two equations for the two unknowns p(x) and p′(x); solving
for p(x) gives a linear function in x :

p(x) =
x − x2

x1 − x2
f (x1) +

x − x1

x2 − x1
f (x2) (21)
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Interpolation Lagrange polynomials

Lagrange polynomials II

This linear interpolation gained from two points could have been obtained
in other ways, but in this form it shows that the contribution of the
function value f (x2) to the approximation is weighted by the distance
between x and x1, varying smoothly from 0 to 1.
A higher order approximation can easily be obtained, but the function
needs to be known at an additional point. Again, we truncate the tree
equations after replacing f (x) by p(x):

f (x1) = f (x) + (x1 − x)f ′(x) +
(x1 − x)2

2
f ′′(x) + . . . , (22)

f (x2) = f (x) + (x2 − x)f ′(x) +
(x2 − x)2

2
f ′′(x) + . . . , (23)

f (x3) = f (x) + (x3 − x)f ′(x) +
(x3 − x)2

2
f ′′(x) + . . . , (24)
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Interpolation Lagrange polynomials

Lagrange polynomials III

If we now solve for p(x), this yields the quadratic interpolating polynomial:

p(x) =
(x − x2)(x − x3)

(x1 − x2)(x1 − x3)
f (x1) +

(x − x1)(x − x3)

(x2 − x1)(x2 − x3)
f (x2)

+
(x − x1)(x − x2)

(x3 − x1)(x3 − x2)
f (x3)

(25)

The general form of the Lagrange interpolation polynomial of order n − 1
can be written as

pn(x) = f (x1)l1,n(x) + . . .+ f (xn)ln,n(x) =
n∑

j=1

lj ,n(x)f (xj)

with lj ,n(x) =
(x−x1) · · · (x−xj−1)(x−xj+1) · · · (x−xn)

(xj−x1) · · · (xj−xj−1)(xj−xj+1) · · · (xj−xn)

(26)

Note that lj ,n(xi ) = δij .
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Interpolation Lagrange polynomials

Better interpolation methods

If derivatives of the function are available: Hermite polynomials
Continous interpolation of a function with continous derivatives if
derivatives of the approximated function unknown: Cubic splines.

Spline example (data points representing the upper profile of a flying
duck); Plot of the result together with the original points:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2  4  6  8  10  12  14

y

x

original data
interpolated values
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Minimization One dimension

Minimization: Golden section search I

Finding the minimum of a function in one dimension

The simplest strategy for finding a minimum of a function is bracketing,
similar to bisection in root finding. But in contrast to root finding where
the best strategy is to continuously half the search interval, the selection
of an optimal new abscissa point is different in the case of minimization.

While a root is bracketed by two points a and b if the signs of f (a) and
f (b) are opposite, we need three points to bracket a minimum: a < b < c
with the property f (a) > f (b) and f (c) > f (b). Now if we choose a new
point x between b and c , we can have f (b) < f (x) leading to the new
bracketing triplet (a, b, x), or f (b) > f (x) leading to the triplet (b, x , c).
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Minimization One dimension

Golden section search II

Now for a strategy to choose the new point x given (a, b, c). If b is a
fraction w of the way between a and c:

b − a

c − a
= w

c − b

c − a
= 1− w (27)

and the new trial point x is an additional fraction z beyond b:
x − b

c − a
= z (28)

Then the next bracketing segment will be either w + z or 1− w in length.
In order to minimize the worst case possibility, we will try to make them
equal:

z = 1− 2w (29)

This makes |b − a| equal to |x − c |. But now w is still undetermined. We
can find it by demanding that w was also chosen optimally.
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Minimization One dimension

Golden section search III

The scale similarity implies that x should be the same fraction of the way
from b to c as was b from a to c , or

z

1− w
= w (30)

Together, Eqs. (29) and (30) yield

w 2 − 3w + 1 = 0 y w =
3−√5

2
≈ 0.38197 (31)

Thus in a bracketing triplet (a, b, c), b has a relative distance of 0.38197
from a and of 0.61803 from c . These fractions correspond to the golden
section so that the minimization is also called golden section search.
The convergence of this method is linear, meaning that additional
significant figures are won linearly with additional function evaluations.
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Minimization One dimension

Precision is machine limited

It is important to note that determination of a minimum can only be done
up to a precision corresponding to the square root of the machine
precision; e.g. for double 3 · 10−8 ≈

√
10−15. This can be understood

considering the Taylor expansion close to the minimum

f (x) ≈ f (b) +
1

2
f ′′(b)(x − b)2 (32)

The second term will be negligible against the first, i.e. a factor of the
floating point precision ε smaller, if

|x − b| < √ε|b|
√

2|f (b)|
b2f ′′(b)

(33)
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Minimization Multidimensional methods

Multidimensional Minimization: Steepest Descent I

The first idea for minimization in N dimensions is to reduce the task to
subsequent onedimensional minimizations.

Algorithm of the steepest descent method:

Start at point P0. As many times as needed, move from point Pi to the
point Pi+1 by minimizing along the line from Pi in the direction of the
local downhill gradient −∇f (Pi ).

This algorithm is not very good as it will perform many small steps in
going down a long, narrow valley even if the valley has perfect quadratic
analytic form.
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Minimization Multidimensional methods

Steepest Descent II

The figures show how the steepest descent directions
zigzag, and how a descent starts off perpendicular to a
contour line and proceeds until it is parallel to another in
its local minimum, forcing a right angle turn.

The problem of this method is that we need to cycle many times through
all N basis vectors in order to reach the minimum. It would be desirable to
improve the choice of minimization directions for the N dimensional
function, in order to proceed along valley directions or to choose
“non-interfering” directions in which minimization along one direction
doesn’t spoil the previous minimizations along other directions.
→ Conjugate gradient minimization
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Minimization Genetic Algorithms

Genetic Algorithms

Flow chart of GA optimization

E=0.5
E=0.3
E=0.2

E=1.2

criteria are met

Stop if convergence

Perform crossover and mutation

Create initial population of functions

new generation

Competition: Evaluate fitness and rank population

These steps are common to many GA methods; they differ by

1 the way the system to be optimized is represented

2 the rules of the competition

3 the way crossover and mutation are implemented
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Minimization Genetic Algorithms

Genetic Algorithms: 1D Schrödinger equation

−0.02
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 0.02

 0.04
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 0.08

 0.1
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 0  10  20  30  40  50  60  70  80  90  100x

ground state electron density
potential
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Numerical differentiation

Numerical differentiation I

The first order derivative of a function f (x) at a point x is defined as the
limit

f ′(x) = lim
h→0

f (x + h)− f (x)

h
(34)

In numerical calculations, it is impossible to work directly with such
limiting values. Therefore, we have to work with finite differences ∆f (x)
like

∆forwardf (x) ≡ f (x + h)− f (x) (35)

known as the forward difference and approximate the derivative with the
quotient ∆f (x)/h for finite h. Other differences that can be used are
backward and central differences:

∆backwardf (x) ≡ f (x)− f (x − h) (36)

∆centralf (x) ≡ f (x + h/2)− f (x − h/2) (37)

Harald O. Jeschke (ITP, Uni Frankfurt) Overview over Numerical Methods July 16, 2009 29 / 70

Numerical differentiation

Numerical differentiation II
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Numerical differentiation

Numerical differentiation III

With the notation f (xi ) ≡ fi we can write for the central difference
approximation to the derivative at mesh point k

f ′k =
fk+1/2 − fk−1/2

h
(38)

In case the use of half intervals is inconvenient, the central difference can
also be taken over two subintervals

f ′k =
fk+1 − fk−1

2h
(39)

Generalizing Eq. (38) to other derivatives, we obtain a central difference
form of the second derivative

f ′′k =
f ′k+1/2 − f ′k−1/2

h
=

fk+1 − 2fk + fk−1

h2
(40)

For many applications, central differences are preferred over forward or
backward differences.
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Numerical differentiation

Numerical differentiation IV

The reason can be seen from a Taylor expansion of f (x + h) at x :

f (x + h) = f (x) +
h

1!
f ′(x) +

h2

2!
f ′′(x) +

h3

3!
f (3)(x) + . . . (41)

Rearrangement yields

f ′(x) =
1

h
[f (x + h)− f (x)]− h

2!
f ′′(x)− . . . (42)

which shows that the error in the forward difference approximation is of
order h times the second derivative. Likewise, we can write the Taylor
expansion for f (x − h)

f (x − h) = f (x)− h

1!
f ′(x) +

h2

2!
f ′′(x)− h3

3!
f (3)(x) + . . . (43)

and obtain an error of the same order for the backward difference
approximation.
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Numerical differentiation

Numerical differentiation V

But subtracting Eq. (43) from Eq. (41), we obtain the expression

f ′(x) =
f (x + h)− f (x − h)

2h
− h2

3!
f (3)(x) + . . . (44)

Thus, the error in approximating f ′(x) with the central difference is
smaller by one order in h than forward and backward differences.

In practice, achieving good accuracy in the numerical calculation of
derivatives is difficult in comparison with numerical integration, for
example.

The reason can be understood from the form of Eq. (38): It requires
calculating the ratio of two differences: f (x + h/2)− f (x − h/2) and
(x + h/2)− (x − h/2). As h becomes small, the differences will be several
orders of magnitude smaller than the values of f or x .
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Numerical differentiation

Numerical differentiation VI

The number of significant figures in the differences will thus be much
smaller than the theoretical number of significant figures corresponding to
the machine precision.
In order to improve over the essentially linear approximation to the tangent
of f (x) at x , one can obtain five-point approximations for the first and
second derivative using a Taylor series expansion for f (x ± 2h):

f ′k =
fk−2 − 8fk−1 + 8fk+1 − fk+2

12h
+

h4

30
f

(5)
k + . . . (45)

f ′′k =
−fk−2 + 16fk−1 − 30fk + 16fk+1 − fk+2

12h2
+

h4

90
f

(6)
k + . . . (46)

The errors are two orders in h smaller than in the approximations of
Eqs. (44) and (40).
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Differential equations Some general remarks

Differential equations I

Types of differential equations
A differential equation relates a function, its derivatives and the
independent variables. For example, the equation for simple harmonic
motion

d2φ

dt2
+ ω2

0φ(t) = 0 (47)

with ω0 = k/m and string constant k, mass m is a linear second order
differential equation as the highest order derivative is a second derivative,
φ and its derivatives appear in the first order and there are no products
between them. Nonlinear differential equations are more difficult to solve
than linear ones.
If φ has more than one independent variable, partial derivatives enter into
the equation as in the example of a vibrating string where the vertical
displacement φ(x , t) is a function of time as well as location x .

Harald O. Jeschke (ITP, Uni Frankfurt) Overview over Numerical Methods July 16, 2009 35 / 70

Differential equations Some general remarks

Differential equations II

(x,t)φ

x

The equation of motion is a partial differential equation (PDE)

∂2φ

∂x2
− 1

v 2

∂2φ

∂t2
= 0 (48)

with phase velocity v . In contrast, Eq. (47) is an ordinary differential
equation (ODE).
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Differential equations Some general remarks

Differential equations III

In general, a two-dimensional (i.e. two independent variable) second-order
partial differential equation can be written in the form

p
∂2φ

∂x2
+ q

∂2φ

∂x∂y
+ r

∂2φ

∂y 2
+ s

∂φ

∂x
+ t

∂φ

∂y
+ uφ+ v = 0 (49)

where p, q, r , s, t, u and v may be functions of the independent variables
x and y .

If they do not depend on dependent variable φ or its derivatives, it is a
linear PDE, otherwise it would be a nonlinear PDE of higher order. The
method of solution depends critically on the order of the equation and on
whether it is linear or not.

If q2 < 4pr , it is called an elliptic equation, if q2 = 4pr a parabolic, if
q2 > 4pr a hyperbolic equation.
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Differential equations Some general remarks

Differential equations IV

An example of an elliptic equation is the two-dimensional Poisson equation

∂2φ

∂x2
+
∂2φ

∂y 2
= −ρ(x , y) (50)

The Poisson equation describes the field φ(x , y) of a charge distribution
ρ(x , y) in two dimensions. A standard example of a parabolic equation is
the diffusion equation

∂φ

∂t
= − ∂

∂x

(
D
∂φ

∂x

)
(51)

where φ stands for the concentration of a certain kind of particle with
diffusion coefficient D.
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Differential equations Some general remarks

Differential equations V

Initial and boundary value problems
A classification of differential equations that is very important for their
numerical solution is between initial and boundary value problems.

The initial value problem propagates the solution forward from values
given at the starting point.

The boundary value problem has constraints that must be fulfilled
both at the start and at the end of the interval.

For PDEs, it may happen that the conditions for some independent
variables are given as initial values, for others as boundary conditions.
This would be an initial value boundary problem, a mixture of both
types.

Harald O. Jeschke (ITP, Uni Frankfurt) Overview over Numerical Methods July 16, 2009 39 / 70

Differential equations Some general remarks

Differential equations VI

For example, consider the harmonic oscillator of Eq. (47). Let’s assume we
are interested in the solution in the interval t = [t0, tN ]. As it is a second
order differential equation, we need to supply two pieces of information
before we can solve it. If we specify for example the value of φ(t) and its
derivative at t = t0, we have an initial value problem. If we have two
values of φ(t) at t = t0 and at t = tN , we have a boundary value problem.

In general, the numerical solution of boundary value problems is more
difficult than that of initial value problems because the relatively simple
approaches of propagating a solution do not work as we do not have
enough information at the starting point. Thus, numerical methods for
both types are different.
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Finite difference solution of differential equations I

Euler’s method for initial value problems
The general philosophy of solving differential equations can be shown with
Euler’s method for the example of Eq. (47).

As in numerical integration, we have to discretize the interval [t0, tN ] on
which we want to solve the equation by introducing a mesh. Our aim is
then to find the values of φ(t) at discrete values t = t0, t1, t2, . . . , tN . The
distance between two consecutive points (the step size) is

hi = ti+1 − ti (52)

In the limit if all N subintervals hi → 0, we recover the continuous
function of an analytical solution.
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Finite difference solution of differential equations II

To solve for {φ(t1), φ(t2), . . . , φ(tN−1)}, we can convert Eq. (47) into a
set of algebraic equations by rewriting he second-order derivative using
finite differences.
Following Eq. (40) we may write

∂2φ

∂t2

∣∣∣
t=ti
−→ φ(ti+1)− 2φ(ti ) + φ(ti−1)

h2
(53)

Using a constant step size h = ti+1 − ti and the short hand φi = φ(ti ), we
arrive at the relation between the values of φ at three different times:

φi+1 − (2− h2ω2
0)φi + φi−1 = 0 (54)

This is called a finite difference equation (FDE) as it relates differences in
the values of φ at nearby points.
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Finite difference solution of differential equations III

To solve the initial value problem, we need two independent pieces of
input on φ(t) at the starting time t0. For example, the mass could be
displaced at the start by one unit in positive direction:

φ0 ≡ φ(t = t0) = 1 (55)

It is released at t = t0 without any initial velocity:

dφ(t)

dt

∣∣∣
t=t0

= 0 (56)

Using finite differences, these two initial conditions can be approximated
by φ0 ≈ φ1 = 1. That provides two of three φ values in Eq. (54) for i = 1,
allowing us to start propagating the solution.
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Finite difference solution of differential equations IV

In mathematica the implementation of Eq. (54) would look as simple as
this:

step = 0.63; num = 100; omega0 = 1;
phi = Table[{i*step, 0}, {i, 0, num - 1}];
phi[[1, 2]] = 1;
phi[[2, 2]] = 1;
Do[phi[[i, 2]] = - phi[[i - 2, 2]]

+ (2.0 - step*step*omega0*omega0)*phi[[i - 1, 2]],
{i, 3, num}]

Export["euler1.dat", phi, "Table"];

The following figure shows the result for ω0 = 1 and for two step sizes
h = 0.63 and h = 0.4.
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Finite difference solution of differential equations V
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Finite difference solution of differential equations VI

The main source of error in the numerical solution of differential equations
is the truncation error inherent in the finite difference approximation to the
derivatives. Multistep methods (function evaluation at more than two
points) allow higher order approximations to the derivative.
→ Runge-Kutta methods

Routine d02pvc from
the NAG C library

Solution of oscillator
problem using
Nag_RK_4_5,
t ∈ [0, 20π]:
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 0

 0.2
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 0.6

 0.8

 1

 0  10  20  30  40  50  60t

φ(t)
cos(x)

tol=10−3

tol=10−5
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Finite element solution to partial differential equations I

In boundary value problems, finite element methods in which the space is
divided into a number of small elements are more often used than finite
difference methods. In each element, the solution is approximated by
simple functions, characterized by a few parameters. Advantages are ease
of treatment of cases with odd geometrical shapes and flexibility in
adjusting the size of the elements to achieve fine subdivisions.
The basic principles of finite element methods can be demonstrated with a
simple example, the first-order differential equation

dφ(t)

dt
+ λφ(t) = 0 (57)

describing exponential decay. For simplicity, we focus on t = [0, 1] and
take λ = 1. The one boundary condition of the first-order ODE can be
taken to be φ(t = 0) = 1.
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Finite element solution to partial differential equations II

The analytical solution of Eq. (57) in this case is

φ(t) = e−t = 1− t +
t2

2!
− t3

3!
+ . . . (58)

For the numerical solution, we now try a power series with n terms:

φ̃n(t) = a0 + a1t + a2t2 + . . .+ antn (59)

To satisfy the initial condition, we need a0 = 1. We now discuss the case
of n = 2 degrees of freedom:

φ̃2(t) = 1 + a1t + a2t2 (60)

This solution will differ from the exact solution Eq. (58), but our goal is to
make it as good as possible on the limited domain t = [0, 1].
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Finite element solution to partial differential equations III

First, we substitute the trial solution Eq. (60) into the differential
equation; we define a quantity called the residual measuring the degree to
which the approximate solution fulfils the differential equation:

R(t; a1, a2) ≡ d φ̃2(t)

dt
+ φ̃2(t) = 1 + (1 + t)a1 + (2t + t2)a2 (61)

In the case we allow for n parameters, we can write (with
a = {a1, a2, ..., an})

R(t; a) ≡ d φ̃n(t)

dt
+ φ̃n(t) (62)

We now determine the value of a by minimizing the residual in the domain
t = [0, 1] with four methods.
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Finite element solution to partial differential equations IV

Collocation method: We require the residual to vanish at n points
t1, t2, . . . , tn within the domain of interest:

R(ti ; a) = 0 for i = 1, 2, . . . , n (63)

For the n = 2 approximation, we can take any two points within [0, 1], for
example t1 = 1/3 and t2 = 2/3. This leads to two equations:

R
(

t =
1

3
; a
)

= 1 +
4

3
a1 +

7

9
a2 = 0 (64)

R
(

t =
2

3
; a
)

= 1 +
5

3
a1 +

16

9
a2 = 0 (65)
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Finite element solution to partial differential equations V

The roots of this set of equations are

a1 = −27

29
a2 =

9

29
(66)

leading to the solution

φcol
2 (t) = 1− 27

29
t +

9

29
t2 (67)

Subdomain method: Instead of asking the residual to vanish in n points,
we can also demand that it vanish on average in n subdomains (not
necessarily nonoverlapping ones):

1

∆ti

∫
∆ti

dt R(t; a) = 0 (68)
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Finite element solution to partial differential equations VI

For the two-parameter approximation we can simply choose two equal
subdomains ∆t1 = [0, 1/2] and ∆t2 = [1/2, 1]. The average residuals are:

1

∆t1

∫ 1/2

0
dt R(t; a) = 2

[1

2
+

5

8
a1 +

7

24
a2

]
(69)

1

∆t2

∫ 1

1/2
dt R(t; a) = 2

[1

2
+

7

8
a1 +

25

24
a2

]
(70)

Requiring both to vanish leads to

a1 = −18

19
a2 =

6

19
(71)

and thus

φsub
2 (t) = 1− 18

19
t +

6

19
t2 (72)
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Finite element solution to partial differential equations VII

Least squares method: Using the condition of maximum likelihood to
determine optimum values of a, we can demand:

∂

∂ai

∫ td

tb

dt [R(t; a)]2 = 2

∫ td

tb

dt R(t; a)
∂R(t; a)

∂ai

!
= 0 (73)

for all i = 1, 2, ..., n. In the n = 2 approximation, we find the solution

φLS
2 (t) = 1− 576

611
t +

190

611
t2 (74)
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Finite element solution to partial differential equations VIII

All these methods and another one described below can be classified by
considering that they are only different in the weights they apply on the
residual:

Method Weighting function

Collocation R(ti ; a) = 0 Wi (t) = δ(ti )

Subdomain 1
∆ti

∫
∆ti

R(t; a) Wi (t) =

{
1∀t in ∆ti

0 otherwise

Least squares
∫ td
tb

dt R(t; a)∂R(t;a)
∂ai

= 0 ∂R(t;a)
∂ai

Galerkin
∫ td
tb

dt R(t; a)ψi (t) = 0 ψi (t)
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Finite element solution to partial differential equations IX

Galerkin method: The most widely used weight in finite element
methods uses basis functions of the trial solution as weights. Expanding
φ̃n(t) in terms of n + 1 linearly independent basis functions we can write

φ̃n(t) = ψ0(t) +
n∑

i=1

aiψi (t) (75)

Here, we use the first term to satisfy the boundary conditions so that it
enters φ̃n(t) without a parameter. A possible choice of basis functions is

ψ0(t) = 1 ψ1(t) = t ψ2(t) = t2 (76)

Now we try to fulfil the condition∫ td

tb

dt R(t; a)ψi (t) = 0 (77)
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Finite element solution to partial differential equations X

In the n = 2 case the Galerkin equations are∫ 1

0
dt R(t, a) t =

1

2
+

5

6
a1 +

11

12
a2 = 0 (78)∫ 1

0
dt R(t, a) t2 =

1

3
+

7

12
a1 +

7

10
a2 = 0 (79)

which we solve to get the solution

φG
2 (t) = 1− 32

35
t +

2

7
t2 (80)

In the domain t = [0, 1], all four solutions represent the exact solution
φ(t) = e−t well (see inset of the following figure). Therefore, the figure
shows the (small) deviations from the exact solution.
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Finite element solution to partial differential equations XI
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Eigenvalue problems I

Let us consider the time-independent Schrödinger equation

Ĥψα ≡
[
− ~2

2µ
∇2 + V

]
ψα = Eαψα (81)

The first term of the Hamiltonian Ĥ represents the kinetic energy, the
second term V is the potential energy describing the interaction of
different parts of the system. Solving this equation requires finding both
eigenvalues Eα and eigenfunctions ψα. In principle, there are three ways of
doing this:

1 Finding an analytic solution for simple forms of the potential V , like
e.g. Hermite polynomials for the harmonic oscillator;

2 Treating the equation as a differential equation and solving it
numerically (for example with the Numerov algorithm);

3 Introducing a basis set and applying matrix methods.

The last approach will be discussed today.
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Eigenvalue problems II

First we have to find a complete set of basis states φ1, φ2, . . . , φn so that
any function can be expressed as a linear combination:

ψα =
n∑

i=1

Cα iφi (82)

with coefficients Cα i expressing the eigenvector ψα in terms of the φi . For
convenience, we chose the basis states normalized and orthogonal:∫

dτ φ∗i φj ≡ 〈φi |φj〉 = δij (83)

where the integral runs over all independent variables.
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Eigenvalue problems III

Choice of basis
As it is desirable to have as few basis states as possible, the basis should
be chosen carefully on physical grounds. For example, in order to solve the
anharmonic oscillator in one dimension for which the potential reads

V (x) =
µ

2
ω2x2 + ε~ω

(µω
~

)2
x4 (84)

with typically small ε, it makes sense to choose the solution of the
harmonic oscillator as a basis:

φm(ρ) =
1√

2mm!
√
π

e−ρ
2/2 Hm(ρ) (85)

Here, Hm(ρ) are Hermite polynomials of degree m, and ρ = x
√
µω/~.
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Eigenvalue problems IV

The φm(ρ) are not eigenfunctions of the anharmonic oscillator because∫ ∞
−∞

dx φk(x) x4 φl(x) 6= 0 for |k − l | = 0, 2, 4, . . . (86)

But for small ε, each eigenfunction ψα is likely to be dominated by a single
function φi . Then the main effect of the anharmonic term is to admix
contributions from the basis functions φi±2. As contributions from
φi±4, φi±6, . . . are likely to be smaller, we can choose the basis
φi−2, φi , φi+2 and approximate the solution with these. This reduces the
anharmonic oscillator to a relatively simple problem: finding a linear
combination of the three basis states that satisfies the Schrödinger
equation.
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Eigenvalue problems V

Once a basis set is chosen, the eigenvalue problem is reduced to finding
expansion coefficients Cα i . To see that, Eq. (81) is multiplied by φ∗j and
integrated over all independent variables:

〈φj |Ĥ|ψα〉 = Eα〈φj |ψα〉 (87)

Now we use the expansion Eq. (82) and the orthogonality condition
Eq. (83) to obtain the algebraic equation for the coefficients Cα i :

n∑
i=1

HjiCα i = EαCα j α = 1, 2, . . . , n (88)

where Hji ≡ 〈φj |Ĥ|φi 〉.
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Eigenvalue problems VI

In matrix notation, this is
H11 H12 . . . H1n

H21 H22 . . . H2n
...

...
. . .

...
Hn1 Hn2 . . . Hnn




Cα 1

Cα 2
...

Cα n

 = Eα


Cα 1

Cα 2
...

Cα n

 (89)

or bringing it into the form of linear equations for the Cα i :
H11 − Eα H12 . . . H1n

H21 H22 − Eα . . . H2n
...

...
. . .

...
Hn1 Hn2 . . . Hnn − Eα




Cα 1

Cα 2
...

Cα n

 = 0 (90)
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Eigenvalue problems VII

This equation only has a solution if

det

∣∣∣∣∣∣∣∣∣
H11 − Eα H12 . . . H1n

H21 H22 − Eα . . . H2n
...

...
. . .

...
Hn1 Hn2 . . . Hnn − Eα

∣∣∣∣∣∣∣∣∣ = 0 (91)

Eq. (91) is called characteristic equation, and the eigenvalues are the roots
of this equation. Once the roots of this polynomial in Eα are found, the
coefficients Cα 1,Cα 2, . . . ,Cα n can be found by solving the linear system
of equations Eq. (90).
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Eigenvalue problems VIII

Another way of approaching the problem posed by Eq. (89) is to find a
transformation matrix U such that the similarity transformation

U−1HU = E (92)

results in a diagonal matrix E. The process of reducing a matrix H to a
diagonal form is called diagonalization.
Another way of looking at the problem posed by Eq. (81) is by thinking in
terms of a basis made from the eigenvectors {ψα}.
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Eigenvalue problems IX

In this basis the Hamiltonian matrix is diagonal, with the diagonal
elements corresponding to the eigenvalues:

〈ψβ|Ĥ|ψα〉 = 〈ψβ|Eα|ψα〉 = Eαδαβ (93)

Thus, the transformation we are looking for is one that takes us from an
arbitrary basis {φi} to the basis {ψα} made from the eigenvectors; in
terms of matrices

Uφ = ψ (94)

with

φ =


φ1

φ2
...
φn

 ψ =


ψ1

ψ2
...
ψn

 (95)
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Eigenvalue problems X

From Eq. (94) one sees that the elements of U are the expansion
coefficients of ψα in terms of φi :

U =


C1 1 C1 2 . . . C1 n

C2 1 C2 2 . . . C2 n
...

...
. . .

...
Cn 1 Cn 2 . . . Cn n

 (96)

In other words, U is made up out of the eigenvectors. It can be shown
that U is unitary

UT = U−1 (97)

and Eq. (94) is equivalent to Eq. (92).
There are many well-established methods for the computationally
expensive task of diagonalizing a matrix.
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Eigenvalue problems XI

The simplest, the Jacobi method, is an iterative method for directly
constructing a rotation matrix U that brings the matrix into diagonal
form.

Most efficient methods proceed in two steps, bringing a general
matrix into tridiagonal or Hessenberg form in a finite number of steps
and then diagonalizing the latter by iteration.

In order to avoid unnecessary computation, diagonalization routines
are usually specialized: They calculate some or all eigenvalues, no,
few or all eigenvectors. They are for tridiagonal, for real symmetric,
for real nonsymmetric, for complex Hermitian, for complex
non-Hermitian matrices.
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Some literature on basic numerical methods

Forman S. Acton, Numerical methods that work, Mathematical Society of
America, Washington 1990.

Very detailed examples, a lot of critical commentary about thought-
less application of numerical methods, entertainingly written. State
of the art of 1970, thus somewhat dated.

Samuel S. M. Wong, Computational Methods in Physics and Engineering,
World Scientific, Singapore 1997.

Very detailed presentation with algorithms, program examples in For-
tran.

Paul L. DeVries, A First Course in Computational Physics, John
Wiley & Sons, New York 1994.

Accessible text with examples from physics, program pieces in For-
tran.
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Some literature on basic numerical methods

William H. Press et al., Numerical recipes in C, The Art of Scientific
Computing, Cambridge University Press, Cambridge 1992.

Exhausting presentation of methods and algorithm, with a library of
useful C programs.

Alexander K. Hartmann, Heiko Rieger, Optimization Algorithms in
Physics, Wiley-VCH, Berlin 2002.

Specialized text on optimization/minimization, with algorithms.

Jürgen Schnakenberg, Algorithmen in der Quantentheorie und
Statistischen Physik, Verlag Zimmermann-Neufang, Ulmen 1995.

Well written text with theoretical physics applications.
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