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1. Non-interacting electrons in the crystal

The topic of this chapter and the following is the electronic structure of

solids. We initially assume that the crystal lattice is rigid, i.e. the ions sit

in fixed positions
⇀

Rn; this corresponds to the decoupling of electron and

lattice motion which is justified by the Born-Oppenheimer-approximation.

We even assume that the temperature is so low that ions are not displaced

from their equilibrium positions. We consider, at first, electrons which do

not interact (i.e. whose Coulomb repulsion is neglected). Only in the next

chapter we will supply the justification: an interacting electron system

may often be mapped onto a non-interacting one, while the interaction is

taken into account by parameters. Thus, the single-particle potential can

be considered an effective potential.

We discuss the Hamiltonian

H =

Ne∑

i=1

⇀
p2i
2m

+

Ne∑

i=1

N∑

n=1

v(
⇀
ri −

⇀

Rn) (1.1)

with the number of electrons Ne, number of atoms N, electron momentum
⇀
pi and the potential v(

⇀
ri−

⇀

Rn) which a single electron is subjected to and

which is contributed by the unit cell n. If the crystal structure has a basis,

i.e. more than one atom per unit cell, then the potential can be written as

v(
⇀
ri −

⇀

Rn) =
∑

τ

ṽ(
⇀
ri −

⇀

Rn −
⇀

Rτ) . (1.2)

A Hamiltonian (1.1) is called single particle Hamiltonian, because it is

composed of single particle contributions. The exact single particle eigen-

functions can be written as an antisymmetric product of single particle

wave functions (as Slater determinant). The antisymmetrization is neces-

sary due to the Pauli principle and is here the only many-particle effect.

A true many-particle Hamiltonian with electron-electron interaction terms

v̄(
⇀
ri−

⇀
rj) can not be written as a sum of single particle contributions any-

more, and the exact many-particle eigenstate cannot be represented as a

single Slater determinant anymore.
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1.1 Electrons in a periodic potential

We start with a single electron in a periodic potential, for which the

Schrödinger equation

Hψ(
⇀
r) =

(
−

 h2

2m
∇2 + V(

⇀
r)

)
ψ(

⇀
r) = εψ(

⇀
r) (1.3)

with translationally invariant V(
⇀
r)

V(
⇀
r) = V(

⇀
r+

⇀

R),
⇀

R lattice vector (1.4)

is valid. A conserved quantity which commutes with the Hamiltonian is

connected to the symmetry of translational invariance: the operator T⇀
R

which brings about a translation by a lattice vector. It is defined by

T⇀
R
f(

⇀
r) = f(

⇀
r+

⇀

R) (1.5)

for arbitrary f(
⇀
r). T⇀

R
commutes with H: [T⇀

R
,H] = 0, because

T⇀
R
Hf(

⇀
r) = T⇀

R

( ⇀
p2

2m
+ V(

⇀
r)

)
f(

⇀
r) =

( ⇀
p2

2m
+ V(

⇀
r+

⇀

R)

)
f(

⇀
r+

⇀

R)

=

( ⇀
p2

2m
+ V(

⇀
r)

)
f(

⇀
r+

⇀

R) = HT⇀
R
f(

⇀
r) (1.6)

The translation operators also commute among themselves: [T⇀
R
, T⇀
R ′] = 0,

T⇀
R
T⇀
R ′ = T⇀

R ′T⇀R = T⇀
R+

⇀
R ′ (1.7)

Thus, it must be possible to choose the eigenfunctions of H as joint eigen-

functions of H and all T⇀
R
:

Hψ(
⇀
r) = εψ(

⇀
r) ; T⇀

R
ψ(

⇀
r) = c(

⇀

R)ψ(
⇀
r) (1.8)

with the joint eigenfunctions ψ(
⇀
r) and eigenvalues c(

⇀

R) of T⇀
R
. They obey:

c(
⇀

R)c(
⇀

R ′) = c(
⇀

R+
⇀

R ′) ; c(
⇀

R)c(−
⇀

R) = 1 ; c(
⇀

R)2 = c(2
⇀

R) . (1.9)

From the normalization, we obtain

1 =

∫
d3r

∣∣ψ(⇀r)
∣∣2 =

∫
d3r

∣∣ψ(⇀r+
⇀

R)
∣∣2 =

∫
d3r

∣∣c(
⇀

R)
∣∣2∣∣ψ(⇀r)

∣∣2 =
∣∣c(

⇀

R)
∣∣2 .

(1.10)
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This means

c(
⇀

R) = ei
⇀
k·

⇀
R , (1.11)

and therefore the eigenfunctions of the lattice periodic Hamiltonian obey

ψ(
⇀
r+

⇀

R) = ei
⇀
k·

⇀
Rψ(

⇀
r) (1.12)

The eigenfunctions can differ from unit cell to unit cell by a phase factor.

However, the electron density is again periodic because

∣∣ψ(⇀r)
∣∣2 =

∣∣ψ(⇀r+
⇀

R)
∣∣2 (1.13)

We take into account that we deal with a finite system by using periodic

boundary conditions. Then we have for the eigenfunctions

ψ(
⇀
r) = ψ(

⇀
r+Ni

⇀
ai) (1.14)

with primitive unit vectors
⇀
ai, i = 1, . . . ,d. The system consists of Ni unit

cells in the directions i = 1, . . . ,d, in total N =
∏
iNi. Thus, the crystal

momentum values
⇀

k which can again be limited to the first Brillouin zone,

are quantized and take on only N discrete values:

⇀

k =

d∑

i=1

ni

Ni

⇀

bi with ni ∈
{
−
Ni

2
, . . . ,

Ni

2
− 1
}

(1.15)

By the Taylor expansion

T⇀
R
f(

⇀
r) = f(

⇀
r+

⇀

R) =

∞∑

n=0

1

n!
(
⇀

R · ∇)nf(⇀r) =
∞∑

n=0

1

n!

( i
 h

⇀

R · ⇀p
)n
f(

⇀
r)

= e
i
 h

⇀
R·⇀pf(

⇀
r) (1.16)

we realize, that the translation operator is given explicitly by

T⇀
R
= e

i
 h

⇀
R·⇀p . (1.17)

For the construction of joint eigenfunctions ψ⇀
k
(
⇀
r) of Hamiltonian and

translation operator, where ei
⇀
k·

⇀
R are the eigenvalues of T⇀

R
, we define

u⇀
k
(
⇀
r) = e−i

⇀
k·⇀rψ⇀

k
(
⇀
r) (1.18)
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These functions are lattice periodic, because

u⇀
k
(
⇀
r+

⇀

R) = e−i
⇀
k·(⇀r+

⇀
R)ψ⇀

k
(
⇀
r+

⇀

R) = e−i
⇀
k·⇀re−i

⇀
k·

⇀
Rei

⇀
k·

⇀
Rψ⇀

k
(
⇀
r) = u⇀

k
(
⇀
r) (1.19)

Thus, we find for the normalized eigenfunctions of the single particle Hamil-

tonian with a lattice periodic potential

ψ⇀
k
(
⇀
r) =

1√
Ω
ei

⇀
k·⇀ru⇀

k
(
⇀
r) (1.20)

with lattice periodic Bloch factor u⇀
k
(
⇀
r). This is the Bloch theorem. The

single-particle eigenfunctions of the lattice periodic Hamiltonian are given

by a product of a plane wave and a lattice periodic Bloch factor. An ex-

ample for a Bloch function in one dimension is shown in Figure 1.1.

Figure 1.1: Bloch func-

tion ψk(x) for a one di-

mensional periodic poten-

tial with lattice constant

a and for a wave number

k = 0.15π/a.
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From the Schrödinger equation, we can obtain a partial differential equa-

tion for the Bloch factors:

H
√
Ωψ⇀

k
(
⇀
r) =

(
−

 h2∇2

2m
+ V(

⇀
r)
)
ei

⇀
k·⇀ru⇀

k
(
⇀
r) = εei

⇀
k·⇀ru⇀

k
(
⇀
r)

= −
 h2

2m
ei

⇀
k·⇀r(− k2 + 2i

⇀

k∇+∇2
)
u⇀
k
(
⇀
r) + V(

⇀
r)ei

⇀
k·⇀ru⇀

k
(
⇀
r)

(1.21)
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For each
⇀

k from the first Brillouin zone, we have to solve a partial differ-

ential equation for u⇀
k
(
⇀
r):

h(
⇀

k)u⇀
k
(
⇀
r) ≡

[
 h2

2m

(1

i
∇+

⇀

k
)2

+ V(
⇀
r)

]
u⇀
k
(
⇀
r) = ε(

⇀

k)u⇀
k
(
⇀
r) (1.22)

The wave vector enters as a parameter. As u⇀
k
(
⇀
r) is periodic with respect to

lattice translations, this is a boundary value problem in a single unit cell. As

solutions, we expect for each fixed
⇀

k eigenvalues εn(
⇀

k) and eigenfunctions

u
n
⇀
k
(
⇀
r). These can be orthonormalized in a unit cell (Ωpuc stands for the

volume of the primitive unit cell):

1

Ωpuc

∫

Ωpuc

d3r u∗
n
⇀
k
(
⇀
r)u

n ′⇀k
(
⇀
r) = δnn ′ (1.23)

For the Bloch functions ψ
n
⇀
k
(
⇀
r) = 1√

Ω
ei

⇀
k·⇀ru

n
⇀
k
(
⇀
r) we then have

∫

Ω

d3rψ∗
n
⇀
k
(
⇀
r)ψ

n ′⇀k ′(
⇀
r)

=
1

Ω

∑
⇀
R

∫

Ωpuc(
⇀
R)

d3r e−i
⇀
k·(

⇀
R+

⇀
r)u∗

n
⇀
k
(
⇀

R+
⇀
r)ei

⇀
k ′·(

⇀
R+

⇀
r)u

n ′⇀k ′(
⇀

R+
⇀
r)

=
1

N

∑
⇀
R

ei(
⇀
k ′−

⇀
k)·

⇀
R 1

Ωpuc

∫

Ωpuc

d3r u∗
n
⇀
k
(
⇀
r)u

n ′⇀k ′(
⇀
r) = δ⇀

k
⇀
k ′δnn ′ (1.24)

Eigenfunctions ψ
n
⇀
k
(
⇀
r) and energy eigenvalues εn(

⇀

k) for the electron in

a periodic potential is thus characterized by two quantum numbers, the

wave vector
⇀

k from the first Brillouin zone and the index n which numbers

discrete eigenvalues of the boundary value problem for the Bloch functions

u
n
⇀
k
(
⇀
r). This index is called band index n. There is an infinite number of

bands as the effective Hamiltonian h(
⇀

k) is self-adjoint; its eigenfunctions

u
n
⇀
k
(
⇀
r) form a basis in the space of square integrable functions defined in

the unit cell Ωpuc. Therefore, the completeness relation
∑

n

u∗
n
⇀
k
(
⇀
r)u

n
⇀
k
(
⇀
r ′) = Ωpucδ(

⇀
r−

⇀
r ′) (1.25)

must be fulfilled. For a finite system with periodic boundary conditions, the

allowed
⇀

k values are discrete; however, as we are dealing with a macroscopic

volume of a crystal, the
⇀

k values are dense in the first Brillouin zone, and
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the dispersion relations εn(
⇀

k) are considered to be continuous functions of

the variable
⇀

k. At special points, lines or surfaces of the Brillouin zone,

band degeneracies with εn(
⇀

k) = εn ′(
⇀

k) for n 6= n ′ can occur.

A different proof for the Bloch theorem uses the Fourier transformation

of the Schrödinger equation which we will need later. As the potential is

periodic, it can be expanded in a Fourier series, with Fourier coefficients

determined by the reciprocal lattice vectors:

V(
⇀
r) =

∑
⇀
G

V⇀
G
ei

⇀
G·⇀r with V⇀

G
=

1

Ωpuc

∫

Ωpuc

d3r V(
⇀
r)e−i

⇀
G·⇀r (1.26)

The wave function we want to determine is also written as a Fourier series:

ψ(
⇀
r) =

∑
⇀
q

c⇀qe
i
⇀
q·⇀r (1.27)

The wave function is not assumed to be lattice periodic; however, it has

to obey the periodic boundary conditions:
⇀
q =

∑3
i=1

ni
Ni

⇀

bi with ni ∈ Z,

where the
⇀

bi span the reciprocal lattice, and the
⇀
q are not restricted to

the first Brillouin zone. The system size is Ni
⇀
ai, i = 1, . . . , 3. Any function

obeying periodic boundary conditions can be represented in this way. Now,

we introduce the Fourier expansion for potential and wave function into

the Schrödinger equation:

(
−

 h2

2m
∇2 + V(

⇀
r)

)
ψ(

⇀
r) =

(
−

 h2

2m
∇2 +

∑
⇀
G

V⇀
G
ei

⇀
G·⇀r
)∑

⇀
q

c⇀qe
i
⇀
q·⇀r

=
∑
⇀
q

(
 h2q2

2m
+
∑
⇀
G

V⇀
G
ei

⇀
G·⇀r
)
c⇀qe

i
⇀
q·⇀r =

∑
⇀
q

 h2q2

2m
c⇀qe

i
⇀
q·⇀r +

∑

⇀
q
⇀
G

V⇀
G
ei(

⇀
G+

⇀
q)·⇀r

=
∑
⇀
q

(
 h2q2

2m
c⇀q +

∑
⇀
G

V⇀
G
c⇀
q−

⇀
G

)
ei

⇀
q·⇀r = ε

∑
⇀
q

c⇀qe
i
⇀
q·⇀r

(1.28)

and thus

∑
⇀
q

[(
 h2q2

2m
− ε

)
c⇀q +

∑
⇀
G

V⇀
G
c⇀
q−

⇀
G

]
ei

⇀
q·⇀r = 0 (1.29)
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As the functions ei
⇀
q·⇀r form an orthonormal basis, we have

(
 h2q2

2m
− ε

)
c⇀q +

∑
⇀
G

V⇀
G
c⇀
q−

⇀
G
= 0 (1.30)

For each
⇀
q (from the entire

⇀

k space) there is now a unique vector
⇀

k from

the first Brillouin zone and a unique reciprocal lattice vector
⇀

G0 so that
⇀
q =

⇀

k−
⇀

G0. Then we have
(

 h2

2m
(
⇀

k−
⇀

G0)
2 − ε

)
c⇀
k−

⇀
G0

+
∑
⇀
G

V⇀
G−

⇀
G0
c⇀
k−

⇀
G
= 0 (1.31)

This represents, for each
⇀

k from the first Brillouin zone, a homogeneous

system of linear equations for the coefficients c⇀
k−

⇀
G0

. Only coefficients that

differ by reciprocal lattice vectors are connected. Therefore, each
⇀

k from the

first Brillouin zone has its own system of equations which is decoupled from

the one belonging to
⇀

k ′. Therefore, the possible solutions can be classified

according to
⇀

k and the result is

ψ⇀
k
(
⇀
r) =

∑
⇀
G

c⇀
k−

⇀
G
ei(

⇀
k−

⇀
G)·⇀r = ei

⇀
k·⇀r
∑
⇀
G

c⇀
k−

⇀
G
e−i

⇀
G·⇀r (1.32)

Thus, the eigenfunctions of the Schrödinger equation can be represented

as

ψ⇀
k
(
⇀
r) = ei

⇀
k·⇀ru⇀

k
(
⇀
r) (1.33)

with
⇀

k from the first Brillouin zone, and

u⇀
k
(
⇀
r) =

∑
⇀
G

c⇀
k−

⇀
G
e−i

⇀
G·⇀r = u⇀

k
(
⇀
r+

⇀

R) because of e−i
⇀
G·

⇀
R = 1 (1.34)

We again obtain the Bloch theorem.

1.2 Nearly free electrons

In this approximation, the starting point are free electrons for which the

periodic potential is a small perturbation which can be treated in quan-

tum mechanical, time independent perturbation theory. We start with the
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Fourier transformed Schrödinger equation

(
 h2

2m
(
⇀

k−
⇀

G0)
2 − ε

)
c⇀
k−

⇀
G0

+
∑
⇀
G

V⇀
G−

⇀
G0
c⇀
k−

⇀
G
= 0 (1.35)

with
⇀

k from the first Brillouin zone and reciprocal lattice vectors
⇀

G,
⇀

G0. In

zero-th order in the potential, it can be neglected completely (V ≈ 0).
In this case, all Fourier coefficients V⇀

G
are identically zero; therefore, (1.35)

implies

(
 h2

2m
(
⇀

k−
⇀

G0)
2 − ε

)
c⇀
k−

⇀
G0

= 0 (1.36)

Consequently

ε = ε
(0)
⇀
G0

(
⇀

k) ≡ ε(0)⇀
k−

⇀
G0

=
 h2

2m
(
⇀

k−
⇀

G0)
2 (1.37)

The lattice is taken into account as we introduced a reciprocal lattice and

Brillouin zone. However, only the periodic non-zero potential will have a

noticeable effect. For free electrons we have as usual the dispersion

ε(0)(
⇀
q) =

 h2q2

2m
(1.38)

and plane waves as eigenfunctions

ψ⇀
q(

⇀
r) =

1√
Ω
ei

⇀
q·⇀r (1.39)

with the volume Ω of the system and discrete
⇀
q, which runs over all val-

ues that are compatible with the periodic boundary conditions and which

are thus not confined to the first Brillouin zone. We can however always

represent it by
⇀

k from the first Brillouin zone and with reciprocal lattice

vector
⇀

G0, as soon as we assume a lattice structure:

⇀
q =

⇀

k−
⇀

G0 , ε
(0)
⇀
G0

(
⇀

k) =
 h2

2m
(
⇀

k−
⇀

G0)
2 , ψ⇀

G0
(
⇀

k) =
1√
Ω
e−i

⇀
G0·⇀rei

⇀
k·⇀r (1.40)

Eigenenergies and -functions are characterized by two quantum numbers,
⇀

k from the first Brillouin zone and
⇀

G0. The eigenfunctions are a product

of plane waves ei
⇀
k·⇀r and the lattice periodic function e−i

⇀
G0·⇀r, which is the
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Figure 1.2: Free electron

bands in one dimension;

extended and reduced zone

scheme.

Bloch factor in case of free electrons. The
⇀

G0 play the role of the band

index n.

Figure 1.2 shows the band structure of free electrons for a one dimensional

system without periodic potential; however, periodicity is taken into ac-

count by Brillouin zone boundaries. Due to translational invariance, the

dispersion is periodic with period 2π
a

, i.e. the free electron parabola can

start at each reciprocal lattice vector
⇀

G0 =
2nπ
a

, n ∈ Z. This leads to the

so-called extended zone scheme, where each copy of the first Brillouin

zone contains the same information. This means that it is enough to restrict

to the first Brillouin zone which is called reduced zone scheme. Here,

each
⇀

k from the first Brillouin zone is associated with an infinite number

of energy eigenvalues which differ by a reciprocal lattice vector
⇀

G0.

We now proceed to the case of a (small) finite periodic potential. As a first

step, we can choose the zero of the potential such that the mean value of

the potential, the 0-th Fourier component, vanishes:

V⇀
G0
≡ V0 =

1

Ωpuc

∫

Ωpuc

d3r V(
⇀
r) = 0 (1.41)

Then, the Fourier transformed Schrödinger equation (1.35) implies

(
ε
(0)
⇀
k−

⇀
G0

− ε
)
c⇀
k−

⇀
G0

= −
∑
⇀
G6=

⇀
G0

V⇀
G−

⇀
G0
c⇀
k−

⇀
G

(1.42)
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Here, ε is the desired new eigenenergy in the presence of a potential; it

should, however, not be too far different from ε
(0)
⇀
k−

⇀
G0

because we assumed

the potential to be weak. We now consider the band corresponding to
⇀

G1.

We can assume that the Fourier coefficients c⇀
k−

⇀
G

for
⇀

G 6=
⇀

G1 are small as

they disappear for negligible potential.

In this case, only c⇀
k−

⇀
G0

= 1√
Ω
6= 0 (see equation (1.40)). We can now

convince ourselves that the right hand side of (1.42) is second order in

V . For this purpose, we again consider equation (1.35), this time writing

it for a different
⇀

G, i.e. we look for the c⇀
k−

⇀
G

which belong to the same

eigenenergy in the band
⇀

G0:

(
ε− ε

(0)
⇀
k−

⇀
G0

)
c⇀
k−

⇀
G
=
∑

⇀̃
G6=

⇀
G

V⇀̃
G−

⇀
G
c⇀
k−

⇀̃
G
= V⇀

G0−
⇀
G
c⇀
k−

⇀
G0

+
∑

⇀̃
G6=

⇀
G0,

⇀
G

V⇀̃
G−

⇀
G
c⇀
k−

⇀̃
G

(1.43)

We have taken the largest term out of the sum because c⇀
k−

⇀
G0

is of order

O(1). This term is also linear in V , the other terms in the sum are at least

of order O(V2). This means that we can neglect them for small V , and we

find

c⇀
k−

⇀
G
=

V⇀
G0−

⇀
G

ε− ε
(0)
⇀
k−

⇀
G

c⇀
k−

⇀
G0

(1.44)

Introduction to equation (1.42) yields

(
ε− ε

(0)
⇀
k−

⇀
G0

)
c⇀
k−

⇀
G0

=
∑
⇀
G

V⇀
G−

⇀
G0
V⇀
G0−

⇀
G

ε− ε
(0)
⇀
k−

⇀
G

c⇀
k−

⇀
G0

(1.45)

and thus

ε = ε
(0)
⇀
k−

⇀
G0

+
∑
⇀
G6=

⇀
G0

∣∣V⇀
G−

⇀
G0

∣∣2

ε− ε
(0)
⇀
k−

⇀
G

(1.46)

This corresponds to the quantum mechanical Brillouin-Wigner perturba-

tion series up to second order in the perturbation V (the energy ε we want

to determine appears both on left and right hand sides, leading to a poly-

nomial equation in ε). Now we have to distinguish two cases: If there is

10



no degeneracy, i.e. the investigated energy level ε
(0)
⇀
k−

⇀
G0

is not (not even ap-

proximately) degenerate with different energy levels ε
(0)
⇀
k−

⇀
G

,
⇀

G 6=
⇀

G0, then

we can replace, on the right hand side, the desired energy ε by its zero-

th approximation ε
(0)
⇀
k−

⇀
G0

; we continue to be exact up to order V2 in the

perturbation which is the periodic potential. This leads to

ε = ε
(0)
⇀
k−

⇀
G0

+
∑
⇀
G6=

⇀
G0

∣∣V⇀
G−

⇀
G0

∣∣2

ε
(0)
⇀
k−

⇀
G0

− ε
(0)
⇀
k−

⇀
G

. (1.47)

This corresponds to the Rayleigh-Schrödinger perturbation expansion up

to second order. In those regions of the Brillouin zone in which no band de-

generacies of the unperturbed free electron energies occur, the eigenenergies

which are calculated in second order perturbation theory in the periodic

potential are modified by terms of the order V2

∆ε
compared to the energies

of free electrons, where ∆ε is the energy separation of neighboring bands.

Usually |∆ε| =
∣∣ε(0)⇀
k−

⇀
G0

− ε
(0)
⇀
k−

⇀
G

∣∣� |V | , and then the approximation for the

eigenenergies is good. Above all, the band shift is second order in V . We

will see in a moment that in the nearly degenerate case, a shift occurs which

is linear in V and which is therefore the dominant shift. Now we discuss

the second case of the case-by-case analysis: The
⇀

k points in the Brillouin

zone at which there is a degeneracy: ε
(0)
⇀
k−

⇀
G0

= ε
(0)
⇀
k−

⇀
G1

for different lattice vec-

tors
⇀

G0 6=
⇀

G1. In the vicinity of these
⇀

k points, the Rayleigh-Schrödinger

perturbation theory is not possible anymore because vanishingly small de-

nominators would lead to divergences. As a rule, degeneracy only occurs

for two reciprocal lattice vectors, and for this term
⇀

G =
⇀

G1 in (1.46) we

cannot replace ε by ε
(0)
⇀
k−

⇀
G0

; however, for the others we can:

ε(
⇀

k) = ε
(0)
⇀
k−

⇀
G0

+

∣∣V⇀
G1−

⇀
G0

∣∣2

ε(
⇀

k) − ε
(0)
⇀
k−

⇀
G1

+
∑

⇀
G6=

⇀
G0,

⇀
G1

∣∣V⇀
G−

⇀
G0

∣∣2

ε
(0)
⇀
k−

⇀
G0

− ε
(0)
⇀
k−

⇀
G

(1.48)

The second term is now of order V , so that the third which is of order V2

11



can be neglected. From the auxiliary calculation

(ε− ε0)(ε− ε1) = V
2 y ε2 − ε(ε0 + ε1) + ε0ε1 − V

2 = 0

y ε± =
1

2

(
(ε0 + ε1)±

√
(ε0 + ε1)2 + 4(V2 − ε0ε1)

)

=
1

2

(
(ε0 + ε1)±

√
(ε0 − ε1)2 + 4V2

)
(1.49)

we find

ε(
⇀

k) =
1

2

[
ε
(0)
⇀
k−

⇀
G0

+ ε
(0)
⇀
k−

⇀
G1

±
√(
ε
(0)
⇀
k−

⇀
G0

− ε
(0)
⇀
k−

⇀
G1

)2
+ 4
∣∣V2

⇀
G0−

⇀
G1

∣∣
]

(1.50)

Exactly at the point of the degeneracy
⇀

k with ε
(0)
⇀
k−

⇀
G0

= ε
(0)
⇀
k−

⇀
G1

there are now

the two new eigenenergies

ε±(
⇀

k) = ε
(0)
⇀
k−

⇀
G0

±
∣∣V⇀
G0−

⇀
G1

∣∣ (1.51)

The degeneracy is lifted by the presence of the periodic potential. The

energy correction at the degenerate k points is shown in Figure 1.3.

Figure 1.3: Corrections to the

free electron bands at the edge

of the first Brillouin zone in the

presence of a small periodic po-

tential. 2π
a0 π

a

2|V       |
1G  − G0

k

(k)ε

Up to now, we have considered one-dimensional examples for band struc-

tures. As an example for a free electron dispersion in three dimensions, in

Figure 1.4 the dispersion of a face centered cubic (fcc) lattice is shown. The

dispersion which starts at the Γ point is folded back at the zone boundaries.

Alternatively, the back-folded branches can be understood as parabolas

which commence at Γ points of different Brillouin zones situated at recip-

rocal lattice vectors
⇀

G. Some of these branches are degenerate. A weak

periodic potential changes this picture by lifting some degeneracies and by

12



Figure 1.4: Free electron bands

in a face centered cubic lattice.

Source: Rössler, Solid State Theory

introducing some band gaps. Aluminum is a good example for such a band

structure which can be explained with the help of the nearly free electron

approximation (see Figure 1.5). Due to the smallness of the energy correc-

tions, the density of states (see Figure 1.6) deviates only a little bit from

the square root behavior that we expect for free electrons.
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Figure 1.5: Band structure

of face centered cubic Alu-

minum. Calculated with all

electron density functional

theory.
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Figure 1.6: Density of states

of face centered cubic Alu-

minum. Calculated with all

electron density functional

theory.
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1.3 Tight binding model

The model of nearly free electrons provides a qualitative understanding

for the formation of energy bands and band gaps as well as for the overall

appearance of band structures for certain Bravais lattices, but it is not suit-

able for quantitative band structure calculations. Generally, the periodic

potential which is the basis for the perturbation theory calculations is not

weak. On the contrary, it is in reality strong, and this is the starting point

of an alternative method which is based on the limiting case of strongly

bound, localized electrons. We start with isolated atoms, assume that their

eigenstates and eigenenergies are known and consider the modification of

these states when the atoms are brought more closely together.

We assume the problem of an isolated atom at position
⇀

R

Hatom
⇀
R

ϕn(
⇀
r−

⇀

R) = Enϕn(
⇀
r−

⇀

R) with Hatom
⇀
R

=
⇀
p2

2m
+ v(

⇀
r−

⇀

R) (1.52)

to have been solved already. v(
⇀
r−

⇀

R) is the potential – usually attractive –

which an electron experiences from an atom at the position
⇀

R. The quantum

number n denotes a complete set of atomic quantum numbers, for example

n = (n̄, l,m,σ) with principal quantum number n̄, angular momentum

quantum numbers (l,m) and spin quantum number σ = ±1
2 . The spin

degeneracy would only be lifted through spin-orbit interaction or through

Coulomb interaction. We now have to find out how this atomic problem

is modified when the atom is not isolated anymore but surrounded by like

atoms in a crystal. The Hamiltonian is then

H =
⇀
p2

2m
+
∑
⇀
R

v(
⇀
r−

⇀

R) = Hatom
⇀
R

+∆V⇀
R
(
⇀
r) with ∆V⇀

R
(
⇀
r) =

∑
⇀
R ′ 6=

⇀
R

v(
⇀
r−

⇀

R ′)

(1.53)

∆V⇀
R
(
⇀
r) is the potential of all other atoms except for the one at position

⇀

R, and it will be considered as the perturbation here. The idea behind this

approach is derived from an elementary theory of the chemical bond: When

you bring two atoms together, pairs of atomic levels split into a binding

and an antibinding state. In the same way, we expect three levels from

three atoms and n levels from N atoms. If now N is very large, as is the

case in the solid, the N states will become, for practical purposes, dense
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and form a continuum of states in an energy interval, i.e. they form an

energy band.

Now we need a suitable ansatz for the wave function of the full crystal

Hamiltonian H. Initially, the states will not be split if the atomic wave

functions decay fast enough (i.e. are sufficiently localized) that they already

vanish in the region in which ∆V⇀
R
(
⇀
r) is different from zero. Then, the

ϕn(
⇀
r−

⇀

R) are also eigenstates of H:

Hϕn(
⇀
r−

⇀

R) =
(
Hatom

⇀
R

+ ∆V⇀
R
(
⇀
r)
)
ϕn(

⇀
r−

⇀

R) = Enϕn(
⇀
r−

⇀

R) (1.54)

They are not yet in the form of Bloch states; however, we can immediately

construct a Bloch state:

ψ
n
⇀
k
(
⇀
r) =

1√
N

∑
⇀
R

ei
⇀
k·

⇀
Rϕn(

⇀
r−

⇀

R) (1.55)

The ψ
n
⇀
k
(
⇀
r) defined in this way fulfills the condition for a Bloch function

ψ
n
⇀
k
(
⇀
r+

⇀

R) = ei
⇀
k·

⇀
Rψ

n
⇀
k
(
⇀
r) (1.56)

because

√
Nψ

n
⇀
k
(
⇀
r+

⇀

R) =
∑
⇀
R ′

ei
⇀
k·

⇀
R ′
ϕn(

⇀
r+

⇀

R−
⇀

R ′) = ei
⇀
k·

⇀
R
[∑

⇀
R ′

ei
⇀
k·(

⇀
R ′−

⇀
R)ϕn

(
⇀
r− (

⇀

R ′ −
⇀

R)
)]

= ei
⇀
k·

⇀
R
[∑

⇀̃
R

ei
⇀
k·

⇀̃
Rϕn(

⇀
r−

⇀̃

R)
]
= ei

⇀
k·

⇀
R
√
Nψ

n
⇀
k
(
⇀
r)

(1.57)

where we used the fact that because of the periodic boundary conditions

we can replace the sum over
⇀

R ′ by the sum over
⇀

R ′ −
⇀

R. Besides, we have

Hψ
n
⇀
k
(
⇀
r) = Enψn

⇀
k
(
⇀
r) .

The atomic levels remain eigenenergies in the crystal; they form dispersion-

less,
⇀

k independent bands. However, the assumption (very rapid decrease)

applies only for core state, not for valence electrons; their wave functions

form bonds by forming overlaps. Nevertheless, we can use equation (1.55)

also in this case as ansatz, even though these Bloch functions will not be
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exact eigenstates for the crystal. The ψ
n
⇀
k
(
⇀
r) are not normalized; we have

〈
ψ
n
⇀
k

∣∣ψ
n ′⇀k

〉
=

1

N

∑
⇀
R1,

⇀
R2

ei
⇀
k(

⇀
R1−

⇀
R2)

∫
d3rϕ∗n(

⇀
r−

⇀

R2)ϕn ′(
⇀
r−

⇀

R1)

=
∑
⇀
R

e−i
⇀
k
⇀
R

∫
d3rϕ∗n(

⇀
r−

⇀

R)ϕn ′(
⇀
r) = δnn ′ +

∑
⇀
R6=0

e−i
⇀
k
⇀
Rαnn ′(

⇀

R)

(1.58)

where in the spatial integration we have replaced
⇀
r→ ⇀

r+
⇀

R1, and
∑

⇀
R1,

⇀
R2
→

N
∑

⇀
R

because there is only a dependency on the difference vector
⇀

R =
⇀

R2 −
⇀

R1. Here, we have introduced

αnn ′(
⇀

R) =

∫
d3rϕ∗n(

⇀
r−

⇀

R)ϕn ′(
⇀
r) (1.59)

i.e. the overlap of the functions ϕn, ϕ ′n which are localized at the sites 0

and
⇀

R. Due to the Ritz variational method, the best approximation for the

energy eigenvalues within this ansatz is

εn(
⇀

k) =

〈
ψ
n
⇀
k

∣∣H
∣∣ψ

n
⇀
k

〉
〈
ψ
n
⇀
k

∣∣ψ
n
⇀
k

〉 (1.60)

We still have to evaluate the matrix element in the numerator:
〈
ψ
n
⇀
k

∣∣H
∣∣ψ

n
⇀
k

〉
= En

〈
ψ
n
⇀
k

∣∣ψ
n
⇀
k

〉

+
1

N

∑
⇀
R1,

⇀
R2

ei
⇀
k(

⇀
R1−

⇀
R2)

∫
d3rϕ∗n(

⇀
r−

⇀

R2)
∑

⇀
R3 6=

⇀
R1

v(
⇀
r−

⇀

R3)

=∆V⇀
R1

(
⇀
r)

ϕn(
⇀
r−

⇀

R1)

(1.61)

The integral runs over a product of three functions ϕ∗n(
⇀
r−

⇀

R2), v(
⇀
r−

⇀

R3)

and ϕn(
⇀
r −

⇀

R1), where each of the three factors represents a function

localized around
⇀

Ri; this means that only in the vicinity of the center
⇀

Ri it

is significantly different from zero. In case that all three positions
⇀

R1,
⇀

R2,
⇀

R3
are pairwise different, then in all areas of space at least two of the three

factors are small; however, if two
⇀

Ri are equal and only different from the

third, there is an integration region in which the integrand is not so small.

The three cases are:
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1)
⇀

R1 =
⇀

R2 6=
⇀

R3

β : =
1

N

∑
⇀
R1

∫
d3rϕ∗n(

⇀
r−

⇀

R1)∆V⇀
R1
(
⇀
r)ϕn(

⇀
r−

⇀

R1) =

∫
d3rϕ∗n(

⇀
r)∆V0(

⇀
r)ϕn(

⇀
r)

(1.62)

This corresponds to the expectation value of the potential of all other

atoms in the atomic state of one atoms at a fixed lattice site which

we can simply choose to be zero. Therefore, this represents a constant

energy shift with respect to the atomic energy level.

2)
⇀

R2 =
⇀

R3 6=
⇀

R1
Then

1

N

∑
⇀
R1 6=

⇀
R2

ei
⇀
k(

⇀
R1−

⇀
R2)

∫
d3rϕ∗n(

⇀
r−

⇀

R2)v(
⇀
r−

⇀

R2)ϕn(
⇀
r−

⇀

R1)

=
∑
⇀
R 6=0

e−i
⇀
k·

⇀
R

∫
d3rϕ∗n(

⇀
r−

⇀

R)v(
⇀
r−

⇀

R)ϕn(
⇀
r) ≡

∑
⇀
R6=0

e−i
⇀
k·

⇀
Rλ(

⇀

R) (1.63)

3)
⇀

R1 6=
⇀

R2 6=
⇀

R3 6=
⇀

R1
This is the case of three center integrals in which in all integration

regions at least two of the three factors are small; we will neglect these

contributions:∫
d3rϕ∗n(

⇀
r−

⇀

R2)v(
⇀
r−

⇀

R3)ϕn(
⇀
r−

⇀

R1) ≈ 0 (1.64)

Together, this already gives the band structure in the tight binding ap-

proximation:

εn(
⇀

k) = En +
β+
∑

⇀
R 6=0 e

−i
⇀
k·

⇀
Rλ(

⇀

R)

1 +
∑

⇀
R 6=0 e

−i
⇀
k·

⇀
Rα(

⇀

R)

with β =

∫
d3rϕ∗n(

⇀
r)
∑
⇀
R 6=0

v(
⇀
r−

⇀

R)ϕn(
⇀
r)

λ(
⇀

R) =

∫
d3rϕ∗n(

⇀
r−

⇀

R)v(
⇀
r−

⇀

R)ϕn(
⇀
r)

α(
⇀

R) =

∫
d3rϕ∗n(

⇀
r−

⇀

R)ϕn(
⇀
r) (1.65)
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Additionally, it is often assumed that the occurring
⇀

R sums can be re-

stricted to nearest or next nearest neighbors; this is justified if the overlap

decays quickly with increasing distance because of the localization of the

atomic wave functions ϕn(
⇀
r−

⇀

R).

1.4 Wannier functions

In the tight binding method, the Bloch functions are constructed from

localized atom wave functions ϕn(
⇀
r). The band structure ε(

⇀

k) is then

obtained from matrix elements of the atomic potentials with respect to

such localized states. Alternatively, an orthonormal basis of localized states

can be chosen; these are the Wannier states. They are defined by

wn(
⇀
r−

⇀

R) =
1√
N

∑
⇀
k∈1st BZ

e−i
⇀
k·

⇀
Rψ

n
⇀
k
(
⇀
r) (1.66)

with Bloch functions ψ
n
⇀
k
(
⇀
r). The orthonormality can be seen from

∫
d3rw∗n(

⇀
r−

⇀

R1)wl(
⇀
r−

⇀

R2) =
1

N

∑
⇀
k

⇀
k ′

ei(
⇀
k·

⇀
R1−

⇀
k ′·

⇀
R2)

∫
d3rψ∗

n
⇀
k
(
⇀
r)ψ

l
⇀
k ′(

⇀
r)

=
1

N

∑
⇀
k

⇀
k ′

ei
⇀
k·(

⇀
R1−

⇀
R2)δ⇀

k
⇀
k ′δnl =

1

N

∑
⇀
k

ei
⇀
k·(

⇀
R1−

⇀
R2)δnl = δ⇀

R1
⇀
R2
δnl

(1.67)

The
⇀

k sums are restricted to the first Brillouin zone. Conversely, we can

also represent Bloch functions as linear combination of Wannier states:

ψ
n
⇀
k
(
⇀
r) =

1

N

∑
⇀
R

ei
⇀
k·

⇀
Rwn(

⇀
r−

⇀

R) (1.68)

If we use for the superposition of localized states in Equation (1.55) Wan-

nier functions instead of atomic wave functions, the overlap matrix element

α(
⇀
r) disappears and we obtain the dispersion relations

εn(
⇀

k) = Ẽn +
∑
⇀
R6=0

e−i
⇀
k·

⇀
Rλ̃(

⇀

R)

with Ẽn =

∫
d3rw∗n(

⇀
r)

( ⇀
p2

2m
+
∑
⇀
R

v(
⇀
r−

⇀

R)

)
wn(

⇀
r)

and λ̃(
⇀

R) =

∫
d3rw∗n(

⇀
r−

⇀

R)v(
⇀
r−

⇀

R)wn(
⇀
r) (1.69)
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As before, three center contributions are neglected. Also for Wannier func-

tions it is often assumed that the λ̃(
⇀

R) are only nonzero for a few neighbors;

the simplest version is

λ̃(
⇀

R) =

{
t for nearest neighbor vector

0 otherwise
(1.70)

The parameter t is called hopping matrix element because it quantifies

the probability that an electron hops from one lattice site to the next and

thereby becomes delocalized. For a one-dimensional linear chain, we find

the dispersion

ε(
⇀

k) = ε0 − 2t cos(ka) (1.71)

for a lattice constant a. For a three-dimensional cubic system, we have

ε(
⇀

k) = ε0 − 2t
(

cos(kxa) + cos(kya) + cos(kza)
)

(1.72)

-1

 0

 1

Γ X M Γ R

ε(k)
Figure 1.7: Tight

binding dispersion

for the simple cu-

bic lattice (in three

dimensions) along

the high sym-

metry directions

X = (1/2, 0, 0),
M = (1/2, 1/2, 0),
R = (1/2, 1/2, 1/2),
all in units of

2π/a.

In Figure 1.7 the tight binding band structure is plotted for 6|t| = 1;

the result is a band which is centered around ε0 (ε0 is the expectation

value of the Hamiltonian H in the Wannier state), with the band width

12|t|. The hopping matrix element t can in general take on positive or

negative values. Here, we have assumed s-like, spatially isotropic Wannier

states, which leads to hoppings t that are the same in all directions. It is

possible to verify that the Wannier functions defined by Equation (1.66)

represent spatially localized states; they can be considered a generalization
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of wave packets for the case of a periodic potential. In one dimension, the

volume Ω is simply the length L = Na of the lattice; k ∈ [−π
a
, π
a
] (the

first Brillouin zone of the one dimensional lattice). In order to explicitly

calculate the Wannier functions, we need the Bloch functions. We know

them for the case of negligible lattice potential V(
⇀
r) = 0. Then, following

Equation (1.40) and specializing to one dimension, we have

ψ
n
⇀
k
=

1√
L
ei(k+

2πn
a

)r = eikrun(r) with un(r) =
1√
L
ei

2πn
a
r,n ∈ Z (1.73)

Because of n = 0,±1,±2, . . . , keff = k + 2πn
a

takes on all values. The

shape of the Wannier functions is then

wn(r− R) =
1√
NL

∑

k∈1.BZ
ei(k+

2πn
a

)(r−R) =
1√
NL

L

2π

∫ π
a

−π
a

dk ei(k+
2πn
a

)(r−R)

=

√
a

2π

[
1

i(r− R)
ei(k+

2πn
a

)(r−R)

]π
a

−π
a

=

√
a

π

sin π
a
(r− R)

r− R
ei

2πn
a

(r−R)

(1.74)

Thus, in contrast to the Bloch functions, the Wannier functions are local-

ized. In this example, the Wannier functions go to zero algebraically; if

there are gaps in the band structure, the decay becomes even exponential.

However, it is also possible (and a common practice in model calculation in

solid state theory) to forgo explicit knowledge of the shape of the Wannier

functions and to use the matrix elements λ̃(
⇀

R) as effective parameters: They

can be obtained as fit parameters for representing precise band calculations

or for representing experimental data. If the hopping matrix elements are

given as parameters, we work with a model Hamiltonian which, in matrix

representation with respect to the Wannier basis, has the following form:

H =
∑

n
⇀
R

Ẽn|n
⇀

R〉〈n
⇀

R|+
∑

n
⇀
R

⇀
R ′

t⇀
R

⇀
R ′ |n

⇀

R〉〈n
⇀

R ′| (1.75)

Here, in position representation wn(
⇀
r−

⇀

R) = 〈⇀r|n
⇀

R〉.

1.5 Velocity and effective mass

Group velocity
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We now ask, for any (free) Bloch electron, what is the expectation value

of the velocity

⇀
v :=

〈
ψ
n
⇀
k

∣∣
⇀
p

m

∣∣ψ
n
⇀
k

〉
, ψ

n
⇀
k
(
⇀
r) = ei

⇀
k·⇀r u

n
⇀
k
(r) . (1.76)

|u
n
⇀
k
〉 we abbreviate by |n

⇀

k〉 and find

⇀
v =

〈
n

⇀

k
∣∣∣e−i

⇀
k·⇀r  h

mi
∇ei

⇀
k·⇀r
∣∣∣n

⇀

k
〉
=
〈
n

⇀

k
∣∣⇀p
∣∣n

⇀

k
〉
+
〈
n

⇀

k
∣∣∣
 h

⇀

k

m

∣∣∣n
⇀

k
〉

=
〈
u
n
⇀
k

∣∣
⇀
p+  h

⇀

k

m

∣∣u
n
⇀
k

〉
=
〈
n

⇀

k
∣∣
⇀
p+  h

⇀

k

m

∣∣n
⇀

k
〉

. (1.77)

This quantity we want to express by ε(
⇀

k) (without explicit knowledge of

|
⇀

k〉):

ε(
⇀

k) = 〈
⇀

k|H|
⇀

k〉 , H =
(
⇀
p+  h

⇀

k)2

2m
+ V , (1.78)

∂ε(
⇀

k)

∂
⇀

k
=

(
∂

∂
⇀

k
〈
⇀

k|

)
H|

⇀

k〉 + 〈
⇀

k|H

(
∂

∂
⇀

k
|
⇀

k〉
)

+
〈

⇀

k
∣∣∣∂H
∂

⇀

k

∣∣∣
⇀

k
〉

=  h
〈

⇀

k
∣∣∣
⇀
p+  h

⇀

k

m

∣∣∣
⇀

k
〉
=  h

⇀
v , (1.79)

because 〈
⇀

k|
⇀

k〉 = 1 implies
∂

∂
⇀

k
〈
⇀

k|
⇀

k〉 = 0 and

(
∂

∂
⇀

k
〈
⇀

k|

)
H|

⇀

k〉 + 〈
⇀

k|H

(
∂

∂
⇀

k
|
⇀

k〉
)

= ε(
⇀

k)
∂

∂
⇀

k
〈
⇀

k|
⇀

k〉 = 0 . (1.80)

Therefore,

⇀
v(

⇀

k) =
1
 h

∂ε(
⇀

k)

∂
⇀

k

and we have:

• ⇀
v(

⇀

k) is continuous function of
⇀

k.

• ⇀
v(

⇀

k) is the expectation value of the velocity and corresponds to the

group velocity of the Bloch electron.

Mass tensor
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We define the effective mass tensor as the second derivatives of ε(
⇀

k)

(
1

m∗n

)

ij

(
⇀

k) ≡ ∂

∂ki

∂

∂kj

εn(
⇀

k)
 h2

For calculating the effective mass at the Γ point (at
⇀

k = 0) we use the

Schrödinger Equation (1.22) for the Bloch factors:

[(⇀
p+  h

⇀

k
)2

2m
+ V(

⇀
r)

]
u
n
⇀
k
(
⇀
r) = εn(

⇀

k)u
n
⇀
k
(
⇀
r) (1.81)

We can rewrite this:

[ ⇀
p2

2m
+ V(

⇀
r) +

 h
⇀

k · ⇀p
m

]
u
n
⇀
k
(
⇀
r) =

(
εn(

⇀

k) −

(
 h

⇀

k
)2

2m

)
u
n
⇀
k
(
⇀
r) (1.82)

Second order perturbation theory in
⇀

k · ⇀p leads to

εn(
⇀

k) = εn(0) +

(
 h

⇀

k
)2

2m
+

 h
⇀

k

m
· 〈n0|

⇀
p|n0〉

+
 h2

m2

∑

n ′( 6=n)

〈n0|
⇀

k · ⇀p|n ′0〉〈n ′0|
⇀

k · ⇀p|n0〉
εn(0) − εn ′(0)

, (1.83)

because the |n
⇀

k〉 conserve lattice momentum and the
⇀

k are in the first

Brillouin zone. To obtain this, quantum mechanical Rayleigh Schrödinger

perturbation theory up to second order in the perturbation
⇀

k · ⇀p was used

again; this requires non-degeneracy of the bands at Γ . For the Bloch factors,

we write u
n
⇀
k
(
⇀
r) = 〈r|n

⇀

k〉.
Thus, we find for the effective mass tensor at Γ :

(
1

m∗n

)

ij

=
δij

m
+

2

m2

∑

n ′( 6=n)

〈n0|pi|n
′0〉〈n ′0|pj|n0〉

εn(0) − εn ′(0)
(1.84)

Usually, only a few n ′ are sufficient for calculating m∗n. In case of inversion

symmetry, we have 〈⇀p〉 = 0, so that in the expansion

εn(
⇀

k) = εn(0) +

(
 h2

2m∗n

)

ij

kikj + O(k4) (1.85)
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terms of odd order are missing.

In the vicinity of Γ , in every band we can expect for small k a quadratic

dependency on k if the potential is inversion symmetric, as for free elec-

trons. However, the effective mass m∗ can be considerably different from

the free electron mass m. If m∗ is diagonal and isotropic, we again have

the free electron dispersion relations (with modified mass m∗).
The

⇀

k ·⇀p perturbation theory can also be performed for
⇀

k0 6= 0. This leads

to the generalization of Equation (1.83):

εn(
⇀

k0 +
⇀

k) = εn(
⇀

k0) +
 h

m

⇀

k〈ψ
n
⇀
k
|
⇀
p|ψ

n
⇀
k0
〉+

 h2k2

2m

+
 h2

m2

∑

n ′ 6=n

〈ψ
n
⇀
k0
|
⇀

k · ⇀p|ψ
n ′⇀k0
〉〈ψ

n ′⇀k0
|
⇀

k · ⇀p|ψ
n
⇀
k0
〉

εn(
⇀

k0) − ε ′n(
⇀

k0)

(1.86)

Then we have as before

∇kεn(
⇀

k) =
 h2

m
〈ψ

n
⇀
k
|
⇀
p|ψ

n
⇀
k
〉 (1.87)

the generalization of the relation 〈
⇀

k|
⇀
p|

⇀

k〉 =  h
⇀

k for free electrons to the

lattice.

Remarks

• m∗ can become negative; this is often the case at the Brillouin zone

boundary. We then refer to the carriers as holes.

• For cubic symmetry, we have

(
1

m∗

)

ij

=
1

m∗
δij , y εn(

⇀

k) = εn(0) +
( hk)2

2m∗
+O(k4) .

• For alkali metals, we have bcc lattices and

metal Li Na K Rb Cs

band 2s 3s 4s 5s 6s

m∗/m 1.33 0.96 0.86 0.78 0.73

In these metals, the effective masses m∗ are of the same order as the

free electron mass m.
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• In some 4f and 5f compounds (rare earths) like for example CeRu2Si2,

CeCu6, UPt3, CeAl3 and others,m∗/m is anomalously large. Values of

m∗/m ∼ 100− 1000 can occur. These are called heavy Fermions. The

reason for this anomalous behavior is due to a failure of the Hartree-

Fock approximation or other perturbative approaches; localized 4f or

5f moments interact strongly with the conduction electrons.

1.6 Electronic classification of solids

The electronic single particle states in the solid are characterized by the

three quantum numbers (l,
⇀

k,σ), with band index l, wave vector
⇀

k and

spin σ. Electrons are Fermions an are obey the Pauli principle; each single

particle state cal only be occupied once. In the single particle picture,

the eigenstate for Ne electrons can be described by specifying occupation

numbers {n
l
⇀
kσ
} with n

l
⇀
kσ
∈ {0, 1}, and we have

H|n
l
⇀
kσ
〉 =

Ne∑

i=1

( ⇀
p2i
2m

+
∑
⇀
R

v(
⇀
ri−

⇀

R)

)
|n
l
⇀
kσ
〉 =
∑

l
⇀
kσ

n
l
⇀
kσ
εl(

⇀

k)|n
l
⇀
kσ
〉 (1.88)

In the ground state, the single particle states that are lowest in energy are

filled until all Ne electrons are accounted for. The energy which is situated

between the highest occupied and the lowest unoccupied state is called

Fermi energy EF. It is determined by
∑

l
⇀
kσ

|εl(
⇀
k)|<EF

1 = 2
∑

l
⇀
k

|εl(
⇀
k)|<EF

1 = Ne (1.89)

The ground state energy is given by

E0 = 2
∑

l
⇀
k

|εl(
⇀
k)|<EF

εl(
⇀

k) (1.90)

In each band l there are exactly N different
⇀

k values and therefore 2N
different single particle states (2 because of spin), if N is the number of

unit cells. At T = 0, these states are filled from the bottom until all

electrons are in place. There are two possibilities:

1. Semiconductors/insulators: The topmost band is completely filled,

the one above it completely empty. The Fermi energy then is in the
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band gap between highest filled and lowest empty band. The highest

filled band is then called valence band. Excitations from the ground

state are only possible if at least the energy of the band gap is avail-

able.

2. Metals: The Fermi energy is inside a band which is not yet fully filled.

Such a band which is at T = 0 not fully filled (or even completely

empty) is called conduction band. As the distance between highest

occupied and lowest unoccupied level is negligibly small, excitations

are possible with arbitrarily small energy cost.

Information from band structures

We consider unit cells with Ze electrons, i.e. systems with Ne = NZe
electrons in total. If Ze is odd and there is no band overlap, the Ze−1

2

bands are filled completely and the band number Ze+1
2 remains half filled.

Following this simple consideration, we would always expect a metal if

Ze is odd; often, this is true. If however Ze is even and there is no band

overlap, the lower Ze
2 are filled completely and we expect a semiconductor

or insulator. This is less often true because the premise of not overlapping

bands is often not fulfilled. In this discussion, we can however ignore the

closed shells which correspond to noble gas configurations and consider

only the outer, not fully filled shells. The number of these outer (or valence)

electrons will be referred to as Z ′e.

• Z ′e = 1: This is the case of alkali metals (Li, K, Na, Rb, Cs) and noble

metals (Cu, Ag, Au). We expect a half filled s band as conduction

band and therefore good metals (see Figure 1.8).

• Z ′e = 3 : Al, Ga, In, Tl: The Fermi energy should be inside the p
bands, and we expect metals.

• Z ′e = 2 : Earth alkali metals Be, Mg, Ca, Sr, Ba, Ra. In spite of even

electron count, these are metals because s and p bands overlap.

• Transition metals Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn with elec-

tron configuration 3dn4s2 or 3dn+14s1; the 3d and 4s bands overlap.

The 4s electrons are more delocalized and form a wide band; the 3d
electrons are localized and form narrow bands. Both types of bands

hybridize and cross. The band structure of Cu in Figure 1.9 is a good

example.
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Figure 1.8: Band

structure of bcc

Na. The con-

duction band is

marked by a more

heavy line. The en-

ergy zero is chosen

to be the Fermi

level EF.
Calculated with FPLO.
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Figure 1.9: Band

structure of fcc Cu.

The five fully oc-

cupied 3d bands

with little disper-

sion are inside the

very wide 4s band.

Calculated with FPLO.
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• 4th main group: C, Si, Ge. These elements crystallize in diamond

Figure 1.10: Density of

states of fcc Cu. The nar-

row 3d bands correspond

to strong peaks below EF.
The remaining density

of states due to 4s states

shows an approximate
√
E

behavior (dashed line).
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structure with two atoms in the basis, i.e. Z ′e = 8 per unit cell. From

atomic s- and p orbitals, per atom four sp3 hybrid orbitals are formed,

with a tetrahedral orientation. Thus, per unit cell we have 8 orbitals

forming 8 spin degenerate bands; this leads to 4 (filled) valence bands

and 4 (empty) conduction bands which are separated by a band gap

(see Figure 1.11).
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Si (GGA)

Figure 1.11:

Band structure of

Si. The band gap is

indirect.

Calculated with FPLO.

• III - V and II - VI semiconductors: In these systems like GaAs, InSb,

ZnSe, ZnS the situation is similar to Si, only that we are dealing with

two different atoms per elementary cell (Example in Figure 1.12).
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Figure 1.12:

Band structure of

GaAs. The band

gap is direct. Spin-

orbit coupling is

taken into account

so that each band

is singly degener-

ate.

Calculated with FPLO.
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• 5th main group: Sb, As, Bi have 5 valence electrons, but they crystal-

lize in structures with 2 atoms per unit cell, i.e. Z ′e = 10. Nevertheless,

usually there is band overlap so that these elements are half metals

rather than semiconductors.

• Ionic crystals from 1st and 7th main groups: NaCl, KBr, NaI crystal-

lize in NaCl or CsCl structure with 2 atoms per unit cell, i.e. Z ′e = 8;

as expected, they are insulators.

1.7 Electronic density of states and Fermi surface

As in the case of phonons, for many problems the full band structure εn(
⇀

k)
contains more information than necessary. If it is sufficient to know in

which energy regions there are states and how many, we use the electronic

density of states:

ρ(E) =
1

N

∑

n
⇀
kσ

δ(E− εn(
⇀

k)) (1.91)

ρ(E) · ∆E is the number of electronic single particle states with energy

between E and E+ ∆E per unit cell. The Fermi energy is fixed by

∫EF
−∞
dEρ(E) = Ze (1.92)

with the total number of electron per unit cell Ze. Again, the density of

states can be expressed by a surface integral over a surface of constant

energy S(E) in
⇀

k space:

ρ(E) =
V

N

1

4π3 h

∑

n

∫

S(E)

ds

|
⇀
v
n
⇀
k
|

(1.93)

with the group velocity of the nth band

⇀
v
n
⇀
k
=

1
 h
∇kεn(

⇀

k) (1.94)

A further possibility is again

ρ(E) = −
1

π
ImG(E+ i0+) = −

1

π

1

N
Im
∑

n
⇀
kσ

1

E+ i0+ − εn(
⇀

k)
(1.95)
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For free electrons, the density of states becomes especially simple; they

have the dispersion relation ε(
⇀

k) =
 h2

⇀
k2

2m , also ∇kε(
⇀

k) =
 h2

⇀
k
m

,
⇀
vk =

 h
⇀
k
m

,k =
1
 h

√
2mE. Then we have

ρ(E) =
V

N

1

4π3 h

∫

S(E)

ds
 hk/m

=
V

N

4πk2m

4π3 h2k
=
Vmk

Nπ2 h2
=
V

N

√
2m3

π2 h3

√
E

(1.96)

Similarly, we find that the density of states of free electrons in two dimen-

sions is ρ2D(E) = const and in one dimension ρ1D(E) ∝ 1√
E
. The form

of the density of states thus depends strongly on the dimension of the

problem.

The density of states for free electrons can also be obtained from the defi-

nition ρ(E) = 1
N

∑
n
⇀
kσ
δ(E− εn(

⇀

k)):

ρ(E) =
1

N

∑
⇀
kσ

δ

(
E−

 h2k2

2m

)
=

V

N(2π)3

∫
d3kδ

(
E−

 h2k2

2m

)

=
V

8π3N
4π

∫
dkk2δ

(
E−

 h2k2

2m

)

:=I

=
V

π2N

m
 h2

√
2m
 h2

√
E (1.97)

because δ(g(x)) =
∑n
i=1

δ(x−xi)
|g ′(xi)|

with single zero points xi of g(x):

g(k) = E−
 h2k2

2m
;g ′(k) = −

 h2k

m
;g(k) = 0 ↔ k1,2 = ±

1
 h

√
2mE

I =
m

 h
√

2mE

∫
dkk2

[
δ

(
k−

√
2mE
 h

)
+ δ

(
k+

√
2mE
 h

)]

=
m

 h
√

2mE

{
2mE
 h2

+
2mE
 h2

}
=

2m
√

2mE
 h3

(1.98)

A square root singularity at the band edge is typical for three dimensional

densities of states; one also finds that the density of states for two di-

mensional systems has a jump at the band edge, and for one dimensional

systems a 1/
√
E singularity occurs. These dimension dependent charac-

teristics of densities of states can also be found in the simple cubic tight

binding densities of states which are shown for one, two and three dimen-

sions in Figures. 1.13-1.15.
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Figure 1.13: 1D tight

binding density of states.

Figure 1.14: 2D tight

binding density of states.

An especially important constant energy surface S(E) defined by εn(
⇀

k) = E

in
⇀

k space is the Fermi surface S(EF), which in the ground states separates

occupied from unoccupied states. For free electrons, the Fermi surface is the

surface of a sphere; in general, the form is complicated and characteristic

for materials and crystal structures.

Figure 1.15: 3D tight

binding density of states.
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Remarks about the Fermi surface

In Figure 1.16 constant energy surfaces S(E) are shown for a two dimen-

sional tight binding model on a square lattice. Depending on filling, these

surfaces S(E) can become the Fermi surfaces. Non-integer fillings arise in

particular due to doping. At small filling, we have nearly a “Fermi sphere”,

at half filling the Fermi surface becomes flat and square shaped, at more

than half filling the Fermi surfaces intersect the boundaries of the Brillouin

zone; then, the Fermi surface is not anymore simply connected within the

first Brillouin zone. In the extended zone scheme in two dimensions how-

ever, again a connected Fermi surface is found which separates a closed

region of occupied states from the region of unoccupied states in
⇀

k space.

Here, the Fermi surface again becomes a “sphere”, but it encloses hole

states rather than electron states.

Figure 1.16: Constant energy

surfaces S(E) for the two dimen-

sional tight binding model.

Source: Czycholl, Theoretische

Festkörperphysik.
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