
5. Monte Carlo

Over the years methods have been developed to express the solution of

probabilistic problems in analytical terms. With powerful computers avail-

able the statistical problems can be modeled directly, reversing the origi-

nally intended direction. The solution to any problem that has an analytical

expression that “looks like” the solution to a probability problem can be

obtained by constructing a realization of the random variable problem.

Calculating π

How to calculate something with random numbers? The first example

demonstrates application of Monte Carlo methods to the calculation of

multidimensional integrals.

Consider a square with corners at (±1,±1) with a circle inscribed in it;

then the area of the square is 4, of the circle π.

Analytically the area of the circle can be calculated by the double integral

π =

∫ 1

−1
dx

∫√1−x2

−
√

1−x2

dy (5.1)

If we select a number of points at random, distributed uniformly in the

square, we know that the probability that they will fall within the circle

is equal to the ratio of areas, π/4. The computer is now used to gener-

ate the random numbers. Thus good (pseudo-) random number generator

algorithms are crucial for the success of the Monte Carlo method.

A tiny program that determines two pseudo-random numbers x and y in

the interval [−1, 1] and counts the number of times c that x2 + y2 < 1

about n = 108 times yields for π ≈ 4c/n (when run repeatedly)

Pi is about 3.14144

Pi is about 3.14147

Pi is about 3.1418

Pi is about 3.14114

Pi is about 3.14266

63

This method is easily generalized to higher dimensions; for example in order

to compute the ratio of the volume of a sphere to that of a cube, π/6, one

just needs an additional pseudo-random number z and has to count the

number of times that x2 + y2 + z2 < 1.

This shows that the computational expense of a multidimensional integral

with Monte Carlo can be as little as linear in the dimension while conven-

tional methods are exponential in the dimension; the time required to do

the calculation is multiplied by the number of mesh points necessary for

the additional dimension. This illustrates why Monte Carlo is often chosen

for multidimensional problems.

Evaluations of integrals by Monte Carlo

Consider an integral of the form∫b
a

dxg(x)f(x) (5.2)

where g(x) is positive definite.

We can always arrange by normalization that∫b
a

dxg(x) = 1 (5.3)

so that g(x) can be considered to represent a probability distribution

function (PDF). Thus, independent of the original (physical) interpre-

tation of the value of the integral it may be regarded as the solution of

a probabilistic problem of computing the average of the distribution func-

tion f(x) over a probability distribution function g(x). (This average will

sometimes be denoted by 〈f〉). If we draw a large number of random values

of x from the distribution described by g(x) we can directly estimate the

average value of f(x) by

〈f〉 ≈ 1

N

N∑
i=1

f(xi) xi drawn from g(x). (5.4)

This equation forms the basis of Monte Carlo evaluations of integrals. The

set of N values xi are said to form a realization of the PDF g(x). This

means that if we consider a range of size dx about the point x the number

of points found within this range should be Ng(x)dx within statistical

uncertainty. At this point the method for selecting a set of xi such that they

64

provide a realization of the PDF g(x) is not obvious. In the simplest case

as for the calculation of π above g(x) can be chosen constant: g(x) ≡ 1,

and the integration can simply be done with uniformly distributed random

numbers. The art of “sampling the function g(x)” will now be discussed

in detail. The sampling process can and should be verified by sorting the

values obtained into bins (i.e. calculating a histogram) and comparing with

the expected number.

The Monte Carlo evaluation also provides a direct estimate of the error

involved in the calculation of the integral. The average of the square of the

function can be calculated at the same time as the average of the function:

〈f2〉 =
1

N

N∑
i=1

f2i xi drawn from g(x) (5.5)

leading to an estimate of the variance of the integrand

σ2 = 〈f2〉− 〈f〉2 (5.6)

and the uncertainty of the full calculation will be given by σ/
√
N. σ is the

variance of the function f and will tend to a fixed number for the limit of

large N while the uncertainty of the calculation falls with the square root

of the number of trials.

The cumulative distribution function (CDF) is defined as

F(x) =

∫ x
a

g(x)dx (5.7)

where the range of x is assumed to be from a to b. This function plays a

central role. Since g(x) > 0, F(x) is a non-decreasing function of x. The

normalization of g(x) (defined in the range [a,b]) requires F(b) = 1. F(x)
represents the probability that a random variable drawn from g(x) lies

between a and x.

The characteristic function

φ(t) ≡
∫
dx eixtg(x) (5.8)

is very useful in the theory of probability. Here we will use it to derive a

formula connecting probability distribution functions.

65

Consider the quantity y(x1, x2, . . . , xn) which is a function of a set of n

independent variable {x1, x2, . . . , xn}. Each variable xi will be considered

as a random variable with its own PDF gi(xi). As the xi take on their

distribution of values, y may also be regarded as a random variable. It will

also have a PDF, say gy(y). Clearly gy(y) is completely determined by the

set of functions {gi(xi)} and the functional relationship y(x1, x2, . . . , xn).
We are now looking for the function gy(y).
We may be sure that the function gy(y) represents the distribution of

the random variable y if it reproduces all of the moments of the function

y(x1, x2, . . . , xn) as the random variables {xi} take on their distributions

of values.

Thus we have the set of conditions∫
dyymgy(y) =

∫{ n∏
i=1

dxi gi(xi)
}
ym(x1, x2, . . . , xn) (5.9)

for m = 0, 1, . . . ,∞.

Multiplying both sides of Eq. (5.9) by (it)m/m! and summing over all m

gives two expressions for the characteristic function for the variable y

φy(t) =

∫
dy eitygy(y)

=

∫{ n∏
i=1

dxi gi(xi)
}
eiy(x1,x2,...,xn)t (5.10)

or, inverting the Fourier transform, we find an expression for the PDF of

y:

gy(y
′) =

∫{ n∏
i=1

dxi gi(xi)
}
δ[y ′−y(x1, x2, . . . , xn)] (5.11)

For the case of only a single variable x Eq. (5.10) becomes

φy(t) =

∫
dy eitygy(y) =

∫
dx eiy(x)tg(x) (5.12)

If y(x) is a monotonic function of x we can invert the equation for y(x) to

find x(y) and, by a change of variables, write the rhs of Eq. (5.12) as

φ(t) =

∫
dy eiyt

g[x(y)]
dy
dx

(y)
(5.13)

66

The fundamental theorem of sampling

Consider F(x), the cumulative distribution function itself, as a random

variable resulting from the insertion for its argument of a random variable

x obtained from the sampling of g(x), the same g(x) from which F(x) was

calculated.

Then, for Eq. (5.12) we have, with F(x) = y(x)∫ 1

0
dF eiFtgF(F) =

∫b
a

dx eiF(x)tg(x) (5.14)

Thus we have an equation involving the distribution function gF(F) for the

random variable F. From the definition of F(x) we have dF = g(x)dx, so

we can rewrite Eq. (5.14) by transforming the integration variable on the

rhs to F:∫ 1

0
dF eiFtgF(F) =

∫ 1

0
dF eiFt (5.15)

and we can identify gF(F) ≡ 1. Thus, under these conditions, F is uniformly

distributed from 0 to 1. Thus if x is distributed according to g(x), F(x) is

distributed uniformly. Of course the inverse holds as well. Since the function

F(x) is non-decreasing it can be inverted to obtain x(F).
Thus if we choose a sequence of random variables Fi uniformly distributed

from 0 to 1, the xi which result from the expression x(F) will be distributed

according to g(x). This method of sampling can be applied to most one-

dimensional sampling problems. It is called transformation method.

Generalization to more than one dimension: If xi are random variables with

a joint PDF g(x1, x2, . . .)dx1dx2 . . . and if y1,y2, . . . are each functions of

all xi, then the joint PDF of the yi is

g(x1, x2, . . .)dx1dx2 . . . = g(y1,y2, . . .)
∣∣∣∂(x1, x2, . . .)

∂(y1,y2, . . .)

∣∣∣ (5.16)

where | . . . | represents the Jacobian determinant.

Sampling monomials for 0 6 x 6 1

We can use the previous result to sample a power of x over the range 0 to

1.

Consider a PDF g(x) with the form

g(x) = 2x for 0 6 x 6 1 (5.17)

67

It is correctly normalized since
∫1

0 dxg(x) = 1. Now we have

F(x) =

∫ x
0
dxg(x) = x2 y x(F) =

√
F (5.18)

Thus choosing a number of uniformly distributed random values F and

taking the square root of each will give values of x with a linear probability

distribution. In general, for a power of x:

g(x) = (n+ 1)xn for 0 6 x 6 1 (5.19)

we have

F(x) = (n+ 1)

∫ x
0
dx xn = xn+1 y x(F) = F

1
n+1 (5.20)

It is very important to verify that the desired distribution has indeed been

obtained for each sampled function.

This can be done by calculating a histogram of the random values x and

comparing to the target PDF g(x). An example will be given below.

Now we can consider an example Monte Carlo integration. Take the integral

∫ 1

0
dx x4 =

1

5
(5.21)

We have several possibilities to write the integrand as a product g(x)f(x)
(the xi are always distributed according to g(x) from column 1); see Ta-

ble 5.1.

g(x) f(x) Integral Monte Carlo result

2x x3 1
2

∫1
0(2x)(x

3)dx 1
2

1
N

∑N
i=1 x

3
i

3x2 x2 1
3

∫1
0(3x

2)(x2)dx 1
3

1
N

∑N
i=1 x

2
i

4x3 x 1
4

∫1
0(4x

3)(x)dx 1
4

1
N

∑N
i=1 xi

5x4 1 1
5

∫1
0(5x

4)(1)dx 1
5

1
N

∑N
i=1 1

Table 5.1: Examples for writing an integrand x4 as product of two func-

tions.

The last case gives the exact answer without the need for random numbers.

This illustrates the point that the ability to sample a function is exactly

68

 0

 5000

 10000

 15000

 20000

 0 2 4 6 8 10x

PDF g(x)=0.2 e-0.2 x

points distributed acc. to g(x)

Figure 5.1: Comparison of probability distribution function g(x) and a

histogram obtained from 107 random numbers.

equivalent to being able to integrate it.

Comparing the variance of the integrand to the value of the integral we

find
σ

〈f〉 =
m√

2m+ 1
(5.22)

where m is the power in the sums in the table. The more of the variation

of the integrand that can be included in the sampling function, rather than

in the evaluated function, the more accurate the integral will be, since the

evaluated function will approach a constant.

Sampling the exponential function 0 6 x 6∞
An exponential is easy to sample and very common. The PDF is

g(x) = pe−px for 0 6 x 6∞ (5.23)

and the CDF

F(x) = 1 − e−px y x = −
1

p
ln(1 − F) (5.24)

If F is uniformly distributed, so is 1 − F so that we can also use x =
− ln(F)/p for sampling.

Other algebraically invertible functions

In order to be able to directly sample a function it must have certain

69

properties:

1) It must be normalizable and positive definite so it can represent a PDF.

2) I must be integrable analytically.

3) The integral (antiderivative) must be invertible.

Sampling a Gaussian distribution

The Gaussian is not easily sampled in this direct manner. While the PDF

is given by

g(x) =
2√
π
e−x2

for 0 6 x 6∞ (5.25)

and the CDF by

F(x) =
2√
π
e−x2

∫ x
0
dx e−x2 ≡ erf(x) (5.26)

the error function is not analytically invertible. However one can use a trick

often employed with Gaussians of transforming from rectangular to polar

coordinates for two functions. We first notice that for two functions g(x)

g(x)g(y)dxdy =
4

π
e−r2rdrdθ =

2

π
e−r2(2rdr)dθ (5.27)

Thus, to sample the same area (same probability) we must take a slice of

e−r22rdr = e−zdz z = r2 (5.28)

and

2

π
dθ (5.29)

Transforming back to Cartesian coordinates

x = r cos θ y = r sin θ (5.30)

the sampling functions are

x =
√

− ln F1 cos 2πF2

y =
√

− ln F1 sin 2πF2 (5.31)

where the range of θ is extended to go from 0 to 2π so that Eq. (5.31)

gives x and y in the range −∞ to ∞.

70

 0

 10000

 20000

 30000

 40000

 50000

 60000

-2 -1 0 1 2x

PDF g(x)=(2/√π) e- x2

points x for g(x)
points y for g(y)

Figure 5.2: Example of sampling a Gaussian using random numbers.

This procedure is named after Box-Muller and yields two normally dis-

tributed random variables from two uniformly distributed ones.

Brute Force inversion of F(x)

One can always numerically integrate g(x) and invert F(x) but this is

often not very satisfactory especially if the PDF is changing rapidly. It is

necessary to compute a table of x in even steps of F

The rejection technique

For sampling a variable over a finite range, the rejection technique is often

very useful. To set up this method it is first necessary to find the maximum

gmax of the PDF g(x) and renormalize to form the quantity

g̃(x) =
1

gmax
g(x) (5.32)

Procedure:

1) Choose a random value of x uniformly in the range a 6 x 6 b.

2) Choose a second uniformly distributed random number y.

3) If g̃(x) > y use the value of x picked. Otherwise repeat from step 1.

In this method, we use evenly distributed points (x,y) and reject them if

they are are not below the curve p(x).
As a high fraction of rejected points means low computational efficiency,

71

instead of using uniformly distributed random numbers for y we can find a

PDF ḡ(x) for which the CDF F̄(x) is invertible and with g(x) < ḡ(x)∀x.

Then the fraction of rejected points is only the ratio of the areas below

g(x) and ḡ(x), respectively.

The Metropolis algorithm

The techniques discussed so far have the drawback that they are difficult

to apply to the sampling of multidimensional functions. The Metropolis

algorithm is designed to do just that, and without it, Monte Carlo methods

wouldn’t be as powerful as they are.

The algorithm is based on the concept of a random walk. In the two-

dimensional classical random walk a point is started at the origin of an

xy coordinate system, and during successive time intervals is allowed to

move one unit in any (rectangular) direction with equal probability. The

probabilistic description of this process is that of an expanding Gaussian

probability distribution which, in the limit of some very long time, would

cover the entire two-dimensional space.

If a similar random walker is started off at some point in a multi-dimensional

space (a walker is specified by giving the values of all of the coordinates in

space) and allowed to take a vectorial step (i.e. all components are changed

at once) he will eventually find his way into all parts of the space. However,

for the present application, we don’t want the walker to simply cover all

parts of the space equally, we would like him to spend more time in those

regions where the function to be sampled is large. In this way the ensemble

of the positions of the walker provide a realization of the PDF since the

probability of finding a walker in a given region should be the same as

g(x1, x2, . . . , xN). In other words, if one could bin up all of the positions

of all of the steps of the walker the probabilities would follow the PDF.

Now we have to find a way to modify the rules of the walk so that this

occurs. We will first give the algorithm and then discuss why it works.

Suppose we wish to represent some multi-dimensional PDF g(
⇀

X). For a

walker, say at some point
⇀

X, we propose a random step (of a uniform

limit δ in each coordinate) to some point
⇀

X ′. For example, if
⇀

X is a three-

72

dimensional variable for M particles then the movements would be

(x ′1,y ′1, z ′1) = (x1+δ{−1, 1},y1+δ{−1, 1}, z1+δ{−1, 1})

(x ′2,y ′2, z ′2) = (x2+δ{−1, 1},y2+δ{−1, 1}, z2+δ{−1, 1})
...

...

(x ′M,y ′M, z ′M) = (xM+δ{−1, 1},yM+δ{−1, 1}, zM+δ{−1, 1}) (5.33)

where each δ{−1, 1} corresponds to a different random value from [−1, 1].
After proposing a step in this manner, the value of the desired PDF is

computed at the new and old positions giving g(
⇀

X) and g(
⇀

X ′) and the

ratio

q ≡ g(
⇀

X ′)

g(
⇀

X)
(5.34)

is formed. The step is then accepted with probability q. This means that if

q is greater than one, it is accepted. If q is less than one, a random number

uniformly distributed between 0 and 1 is generated and only if q is greater

than this number is the step accepted. This algorithm was proposed in

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller,

Equation of State Calculations by Fast Computing Machines, J. Chem.

Phys. 21, 1087 (1953).

The step may be proposed in a number of ways, not just the described

one. In practical cases several walkers are carried along simultaneously in

order to cover the space so that an estimate of the value of the quantity

being calculated can be made at each step. One would try to start them

off in a distribution as closely resembling the expected final distribution as

possible.

To understand why the Metropolis algorithm works think of the flow of

probability like the flow of something material. There are some areas more

dense than others with a constant flux of material between the areas. We

have to create a flow such that the equilibrium distribution is the one that

represents g(
⇀

X). We would like to find a method to control the flow of

probability in this dynamic equilibrium such that we reach a steady state

as quickly as possible.

Consider the conditions needed once the equilibrium state is reached. if

p(
⇀

X ′,
⇀

X) is the probability of a flow from
⇀

X to
⇀

X ′ and g(
⇀

X) is the PDF at
⇀

X then, since the large probability of flow from low density to high density

must match the small probability of flow from high density to low density

73

(so that the densities remain constant), we must have

p(
⇀

X ′,
⇀

X)g(
⇀

X) = p(
⇀

X,
⇀

X ′)g(
⇀

X ′) (5.35)

This equation simply states that the rate of flow toward high density over

the rate of flow away from high density is the inverse of the ratio of the

densities. It is called detailed balance.

We can now break the probability p(
⇀

X ′,
⇀

X) into the product of two factors

corresponding to a conditional probability.

We shall express this probability by first proposing the change
⇀

X → ⇀

X ′

and then making a test to see if the proposed change is accepted. Thus we

write

p(
⇀

X ′,
⇀

X) = a(
⇀

X ′,
⇀

X)t(
⇀

X ′,
⇀

X) (5.36)

where t(
⇀

X ′,
⇀

X) is the probability that we propose a point near
⇀

X ′ starting

at
⇀

X and a(
⇀

X ′,
⇀

X) is the probability that such a “move” will be accepted.

Any combination a t which satisfies Eq. (5.35) will work, some may work

faster than others, some may be easier to implement than others. For sim-

plification we choose

t(
⇀

X ′,
⇀

X) = t(
⇀

X,
⇀

X ′) (5.37)

The balance equation (5.35) is now reduced to

a(
⇀

X ′,
⇀

X)g(
⇀

X) = a(
⇀

X,
⇀

X ′)g(
⇀

X ′) (5.38)

It only remains for us to pick a function a which satisfies this equation.

Let’s define the quantity

q(
⇀

X ′,
⇀

X) =
g(

⇀

X ′)

g(
⇀

X)
(5.39)

Now consider

a(
⇀

X ′,
⇀

X) ≡ min[1,q(
⇀

X ′,
⇀

X)] (5.40)

By examining Eq. (5.38) for the case that q < 1 and q > 1 it can be

seen that it is satisfied in both situations. The condition for acceptance is

indeed the one of the Metropolis algorithm.

74

There is an alternative which is called the heat bath method:

a(
⇀

X ′,
⇀

X) ≡ q(
⇀

X ′,
⇀

X)

1 + q(
⇀

X ′,
⇀

X)
(5.41)

The vector containing the walkers represents the PDF in the sense that

more walkers are concentrated in the region where the function is large.

This can be a very useful way to represent a function. For simple functions

it may seem like a poor expression but for multi-dimensional functions

it is very efficient. If we wish to average over a function, the values are

only needed where it is large. The usual representation of a function at all

points in space becomes incredibly wasteful. Consider a mesh of only 10

points in each dimension. For thirty particles in three dimensions we would

need 1090 tabulated values, impossible on any computer. With the Monte

Carlo representation, problems with the order of a thousand particles can

be solved.

75

