Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Daniel Guterding

Frankfurt, April 29, 2014

Exercises for Computational Methods in Solid State Theory SS 2014

Exercise Set 2

(Due date: Monday, May 11, 2014)

Exercise 2 (Density functional theory calculation and tight binding fit) (10 points)

 $Sr_2CuO_2Cl_2$ is an antiferromagnetic Mott insulator. It crystallizes in the tetragonal space group I4/mmm (No. 139) with lattice parameters $\mathfrak{a}=3.9716$ Å and $\mathfrak{c}=15.6126$ Å. The Wyckoff positions are:

Atom	χ	y	Z
Sr	0	0	0.39259
Cu	0	0	0
O	0	1/2	0
Cl	0	0	0.18309

- a) Compose the cif file of Sr₂CuO₂Cl₂ and visualize it (for example using VESTA).
- b) Prepare an FPLO (Full-potential local-orbital minimum basis code) input file and calculate bandstructure and density of states (DOS). Find the main orbital character of the single band crossing the Fermi level.
- c) Write a program that fits the band crossing the Fermi level with a TB dispersion using an onsite energy and three hopping paramters t_i , i=1,2,3. Suitable optimization methods can be found in the scipy.optimize module of the Python programming language.
- d) Calculate the density of states (DOS) for the tight binding Hamiltonian and compare it to the one calculated by the DFT code.