
7. Response functions

7.1 Random Phase Approximation

The truncation of the equation of motion for the Greens function with the

Hartree Fock mean field approximation transforms the Hamiltonian into

an effective single particle operator; this too simple treatment of the influ-

ence of interactions leads to a lack of realism. A better approach than the

truncation of the equation of motion hierarchy is the approximate evalu-

ation also of the higher order equations of motion. This allows to better

account for the interaction as the full Hamiltonian enters the equation of

motion at each step.1

The so called random phase approximation (RPA) involves replacement of

operator products by averages as in the mean field approximation (neglect

of the fluctuation of averages). For the single particle Greens function

G⇀
kσ
(ω) = 〈〈c⇀

kσ
; c†⇀
kσ
〉〉 (7.1)

the result is again the Hartree-Fock result.

The magnetic susceptibility is an important quantity describing the re-

sponse of a material to an external magnetic field
⇀

H(t) =
⇀

H0e
−(ω+iδ)t:

〈Mα〉(t) = 〈Mα〉−
∑

β

∫∞

−∞
dt ′〈〈Mα(t);Mβ(t ′)〉〉Hβ0e−i(ω+iδ)t ′ (7.2)

with cartesian directions α, β. As the Greens function is homogeneous in

time we have

〈Mα〉(t) = 〈Mα〉−
∑

β

∫∞

−∞
dt ′〈〈Mα;Mβ(t ′ − t)〉〉Hβ0e−i(ω+iδ)(t ′−t)e−i(ω+iδ)t

= 〈Mα〉−
∑

β

∫∞

−∞
dt ′〈〈Mα;Mβ(t ′)〉〉e−i(ω+iδ)t ′Hβ(t)

1This chapter is based on K. Elk, W. Gasser, “Die Methode der Greenschen Funktionen in der
Festkörperphysik”, Akademie-Verlag Berlin 1979, and W. Nolting, “Grundkurs Theoretische Physik 7,
Viel-Teilchen-Theorie”, Springer 2009.
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(7.3)

with a field independent part of the magnetization 〈Mα〉 which is impor-

tant for ferromagnetic systems and the second part describing the magne-

tization induced by an external magnetic field. This part is proportional

to H(t); the prefactor represents the magnetic susceptibility χ:

〈Mα〉(t) = 〈Mα〉+
∑

β

χαβ(ω)Hβ(t) (7.4)

Comparison yields

χαβ(ω) =

∫∞

−∞
dt e−i(ω+iδ)t〈〈Mα;Mβ(t)〉〉 ≡ −〈〈Mα;Mβ〉〉(ω−iδ) (7.5)

Thus, χαβ(ω) is given by the Fourier transform of the Greens function.

We can now replace the magnetic moment operator
⇀

Mi at site i by a spin

operator
⇀

Si to obtain

χµνij (ω) = − 〈〈Mµ
i ;Mν

j 〉〉(ω) = − g2µ2
B〈〈Sµi ;Sνj 〉〉(ω) (7.6)

with gyromagnetic factor g and Bohr magneton µB. Of particular interest

are the longitudinal susceptibility

χzzij (ω) = − g2µ2
B〈〈Szi ;Szj 〉〉(ω) (7.7)

and the transversal susceptibility

χ+−
ij (ω) = − g2µ2

B〈〈S+i ;S−j 〉〉(ω) where S±i = Sxi ± iSyi (7.8)

The operators Szi , S
+
i and S−i can again be replaced by creation and anni-

hilation operators:

Szi =
1

2
(ni↑ − ni↓) , S+i = c†i↑ci↓ , S−i = c†i↓ci↑ (7.9)

which leads to

χzzij (ω) = −
1

4
g2µ2

B(2δσσ ′ − 1)〈〈niσ;njσ ′〉〉(ω) (7.10)

and

χ+−
ij (ω) = − g2µ2

B〈〈c†i↑ci↓; c
†
i↓ci↑〉〉(ω) (7.11)
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linking the susceptibilities to special two particle Greens functions. We

will now apply the random phase approximation to the calculation of the

transversal magnetic susceptibility within the Hubbard model

H =
∑
⇀
kσ

(ε⇀
k
− µ)c†⇀

kσ
c⇀
kσ

+
U

N

∑
⇀
k
⇀
k1

⇀
q

c†⇀
k↑
c⇀
k−

⇀
q↑c
†
⇀
k1↓
c⇀
k1+

⇀
q↓ ; (7.12)

the random phase approximation will be valid in the limit of weak inter-

actions. In
⇀

k space we have for the susceptibility

χ+−(
⇀
q,ω) = − g2µ2

B

∑
⇀
k
⇀
k ′

〈〈c†⇀
k↑
c⇀
k+

⇀
q↓; c

†
⇀
k ′↓
c⇀
k ′−

⇀
q↑〉〉(ω) (7.13)

The equation of motion for this two-particle Greens function is

ω〈〈c†⇀
k↑
c⇀
k+

⇀
q↓; c

†
⇀
k ′↓
c⇀
k ′−

⇀
q↑〉〉(ω) =

(
〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉
)
δ⇀
k ′,

⇀
k+

⇀
q
+

+
(
ε⇀
k+

⇀
q
− ε⇀

k

)
〈〈c†⇀

k↑
c⇀
k+

⇀
q↓; c

†
⇀
k ′↓
c⇀
k ′−

⇀
q↑〉〉(ω)+

+
U

N

∑
⇀
k1,

⇀
q1

〈〈(c†⇀
k↑
c†⇀
k1↑
c⇀
k1−

⇀
q1↑c

⇀
k+

⇀
q−

⇀
q1↓ − c

†
⇀
k+

⇀
q1↑
c†⇀
k1↓
c⇀
k1+

⇀
q1↓c

⇀
k+

⇀
q↓); c

†
⇀
k ′↓
c⇀
k ′−

⇀
q↑〉〉(ω)

(7.14)

According to the principles of the random phase approximation the excess

operators in the higher order Greens functions are replaced by averages:

c†⇀
k↑
c†⇀
k1↑
c⇀
k1−

⇀
q1↑c

⇀
k+

⇀
q+

⇀
q1↓ ≈ 〈n⇀

k1↑〉δ⇀q1,0c
†
⇀
k↑
c⇀
k+

⇀
q↓−〈n⇀

k↑〉δ⇀k⇀k1−
⇀
q1
c†⇀
k−

⇀
q1↑
c⇀
k−

⇀
q−

⇀
q1↓

(7.15)

Here, conservation of momentum and spin was used:

〈c†⇀
kσ
c⇀

k ′σ ′
〉 = 〈n⇀

kσ
〉δ⇀
k
⇀

k ′
δσσ ′ (7.16)

Also

c†⇀
k+

⇀
q1↑
c†⇀
k1↓
c⇀
k1+

⇀
q1↓c

⇀
k+

⇀
q↓ ≈ 〈n⇀

k1↓〉δ⇀q1,0c
†
⇀
k↑
c⇀
k+

⇀
q↓−〈n⇀

k+
⇀
q↓〉δ⇀k1,

⇀
k+

⇀
q
c†⇀
k+

⇀
q1↑
c⇀
k+

⇀
q+

⇀
q1↓

(7.17)

This yields
(
ω−ω↑↓⇀

k
(
⇀
q)
)
〈〈c†⇀

k↑
c⇀
k+

⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−
⇀
q↑〉〉(ω) =

(
〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉
)

[
δ⇀
k ′,

⇀
k+

⇀
q
−
U

N

∑
⇀

k ′′

〈〈c†⇀
k ′′↑
c⇀

k ′′+
⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−
⇀
q↑〉〉(ω)

]
(7.18)
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with the Stoner single particle excitation spectrum

ωσσ ′
⇀
k

(
⇀
q) = ε⇀

k+
⇀
q
− ε⇀

k
+U(n−σ ′ − n−σ) (7.19)

Now we divide Eq. (7.18) by
(
ω−ω↑↓⇀

k
(
⇀
q)
)

and sum over
⇀

k:

∑
⇀
k

〈〈c†⇀
k↑
c⇀
k+

⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−
⇀
q↑〉〉(ω) =

∑
⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k
(
⇀
q)

δ⇀
k ′,

⇀
k+

⇀
q

−
∑
⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k
(
⇀
q)

U

N

∑
⇀

k ′′

〈〈c†⇀
k ′′↑
c⇀

k ′′+
⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−
⇀
q↑〉〉(ω) (7.20)

After renaming summation indices this means

∑
⇀
k

〈〈c†⇀
k↑
c⇀
k+

⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−
⇀
q↑〉〉(ω) =

∑
⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k
(
⇀
q)

δ⇀
k ′,

⇀
k+

⇀
q

1 +
U

N

∑
⇀
k ′′

〈n⇀
k ′′↑〉− 〈n⇀

k ′′+
⇀
q↓〉

ω−ω↑↓⇀
k ′′
(
⇀
q)

(7.21)

with the susceptivility of the Stoner model

χ0(
⇀
q,ω) = g2µ2

B

∑
⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k
(
⇀
q)

(7.22)

This yields for the transverse susceptibility

χ+−(
⇀
q,ω) =

χ0(
⇀
q,ω)

1 − U
Ng2µ2

B

χ0(
⇀
q,ω)

(7.23)

The denominator in this RPA expression for the susceptibility can become

small for certain
⇀
q and ω values so that the susceptibility becomes big.

Noninteracting susceptibility

The spin susceptibility2 χ1 can be expressed3 in terms of the Matsubara

spin-spin correlation function

(χ1)
s
t =

1

3

∫β

0
dτeiωτ

〈
Tτ

⇀

Ss(q, τ)
⇀

St(−q, 0)
〉

2This part was worked out by Michaela Altmeyer; thank you!
3S. Graser, T.A. Maier, P.J. Hirschfeld, D.J. Scalapino, New J. Phys. 11, 025016 (2009).
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with the Matsubara frequency ω, the imaginary time τ and the spin op-

erators for the different orbitals s
⇀

Ss(q) =
1

2

∑

k,αβ

d†sα(k+ q)
⇀
σαβdsβ(k), (7.24)

where α and β are spin indices. The charge susceptibility χ0 can be calcu-

lated in a very similar manner,

(χ0)
s
t =

∫β

0
dτeiωτ 〈Tτns(q, t)nt(−q, 0)〉 (7.25)

with

ns(q) =
1

N

∑

k,αβ

d†sα(k+ q)dsβ(k)δα,β. (7.26)

In the noninteracting case (
∑3
i=1 Tr(σ2

i ) = 6), both are equivalent and can

be written in a more general way as

χpqst (q, iω) =
1

N2

∫β

0
dτeiωτ

∑

kk ′

∑

αβ

〈
Tτd

†
pα(k, τ)dqα(k+ q, τ)×

× d†sβ(k ′, 0)dtβ(k
′ − q, 0)

〉
.

(7.27)

The imaginary-time ordered expectation value can be evaluated by means

of Wick’s theorem.

χpqst (q, iω) = −
1

N2

∫β

0
dτeiωτ

∑

kk ′

∑

αβ

Gptα (k+ q, τ)Gsqα (k,−τ)δα,βδk ′,k+q

+
1

N2

∫β

0
dτeiωτ

∑

kk ′

∑

αβ

Gpqα (k, τ)Gstβ (k, 0)δq,0.

(7.28)

The second term leads to an unphysical delta function δq,0 and will there-

fore be neglected in the following considerations, while the first term can

be further analyzed by writing the imaginary time Green’s functions as

Fourier transforms of Matsubara Green’s functions (the summation over

the spin index α leads to a factor of 2),

Gpt(k, τ) =
1

β

∑

ωn

e−iωnτGpt(k, iωn). (7.29)
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Insertion into equation (7.28) yields

χpqst (q, iω) = −
1

N

∫β

0
dτeiωτ

∑

k

2

β2

∑

ωn,ωm

e−iωnτGpt(k+q, iωn)e
iωmτGsq(k, iωm),

(7.30)

so that we can now perform the integration over imaginary time.

χpqst (q, iω) = −
1

N

∑

k

2

β2

∑

ωn,ωm

eiβ(ω−ωn+ωm) − 1

i(ω−ωn +ωm)
Gpt(k+q, iωn)G

sq(k, iωm).

(7.31)

Due to the fact that the frequencies are Fermionic Matsubara frequencies,

the fraction is zero when ω 6= ωn +ωm; however, when ω = ωn +ωm

we have to consider the limit

eiβ(ω−ωn+ωm) − 1

i(ω−ωn +ωm)
δωn,ω+ωm =

1 + iβ(ω−ωn +ωm) − 1

i(ω−ωn +ωm)
δωn,ω+ωm = βδωn,ω+ωm,

(7.32)

so that

χpqst (q, iω) = −
2

βN

∑

k

∑

ωn,ωm

Gpt(k+ q, iωn)G
sq(k, iωm)δωn,ω+ωm

= −
2

βN

∑

k

∑

ωm

Gpt(k+ q, iω+ iωm)G
sq(k, iωm).

(7.33)

Making use of the spectral representation of the Green’s function

Gpt(k, iωn) =
∑

µ

asµ(k)a
p∗
µ (k)

iωn − Eµ(k)
, (7.34)

where the Eµ denote the eigenvalues of the tight binding Hamiltonian and

asµ are the s components of the corresponding eigenvectors, this can be

written as

χpqst (q, iω) = −
2

βN

∑

k

∑

ωm

∑

µν

asµ(k)a
p∗
µ (k)

iωm − Eµ(k)

aqν(k+ q)a
t∗
ν (k+ q)

iω+ iωm − Eν(k+ q)
.
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(7.35)

Evaluation of the sum over Matsubara frequencies leads to

χpqst (q, iω) = −
2

N

∑

k,µν

asµ(k)a
p∗
µ (k)aqν(k+ q)a

t∗
ν (k+ q)

iω+ Eν(k+ q) − Eµ(k)

[
f(Eν(k+ q)) − f(Eµ(k))

]

(7.36)

where N is the product of the number of considered k points and the

number of bands in the model hamiltonian. The static homogeneous spin

susceptibility can be calculated quite easily from

χS(q) =
1

2

∑

sp

(χ1)
pp
ss (q,ω = 0)

= −
1

N

∑

sp

∑

k,µν

asµ(k)a
p∗
µ (k)apν(k+ q)a

s∗
ν (k+ q)

Eν(k+ q) − Eµ(k)

[
f(Eν(k+ q)) − f(Eµ(k))

]
.

(7.37)

The susceptibility (7.36) should be properly normalized, taking into ac-

count the number of possible spin orientations, the number of considered

k points and the number of bands in the model Hamiltonian (2 ·Nk · n).

The computational implementation needs an extra consideration. When

the energies in the denominator are the same we have a unphysical singu-

larity, which can be avoided using the rule of l’Hopital, so that

χS(q) =
1

2

∑

sp

(χ1)
pp
ss (q,ω = 0)

=
β

2N

∑

sp

∑

k,µν

asµ(k)a
p∗
µ (k)apν(k+ q)a

s∗
ν (k+ q)

×
[

1

eβ(Eν(k+q)−µ) + e−β(Eν(k+q)−µ) + 2
+

1

eβ(Eµ(k)−µ) + e−β(Eµ(k)−µ) + 2

]
.

(7.38)

Random Phase Approximation (RPA) The random phase approxi-

mated susceptibilities can be obtained from a Dyson-type equation. The

charge susceptibility can be calculated from

(χRPA0 )pqst = χpqst −
∑

uvwz

(χRPA0 )pquv(U
c)uvwzχ

wz
st , (7.39)
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while the spin susceptibility has a plus sign instead,

(χRPA1 )pqst = χpqst +
∑

uvwz

(χRPA0 )pquv(U
s)uvwzχ

wz
st . (7.40)

106


