
Minimization One dimension

Golden section search I

Finding the minimum of a function in one dimension

The simplest strategy for finding a minimum of a function is bracketing,
similar to bisection in root finding. But in contrast to root finding where
the best strategy is to continuously half the search interval, the selection
of an optimal new abscissa point is different in the case of minimization.

While a root is bracketed by two points a and b if the signs of f (a) and
f (b) are opposite, we need three points to bracket a minimum: a < b < c
with the property f (a) > f (b) and f (c) > f (b). Now if we choose a new
point x between b and c , we can have f (b) < f (x) leading to the new
bracketing triplet (a, b, x), or f (b) > f (x) leading to the triplet (b, x , c).

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 1 / 30

Minimization One dimension

Golden section search II

Now for a strategy to choose the new point x given (a, b, c). If b is a
fraction w of the way between a and c :

b − a

c − a
= w

c − b

c − a
= 1− w (1)

and the new trial point x is an additional fraction z beyond b:
x − b

c − a
= z (2)

Then the next bracketing segment will be either w + z or 1− w in length.
In order to minimize the worst case possibility, we will try to make them
equal:

z = 1− 2w (3)

This makes |b − a| equal to |x − c |. But now w is still undetermined. We
can find it by demanding that w was also chosen optimally.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 2 / 30

Minimization One dimension

Golden section search III

The scale similarity implies that x should be the same fraction of the way
from b to c as was b from a to c , or

z

1− w
= w (4)

Together, Eqs. (3) and (4) yield

w2 − 3w + 1 = 0 y w =
3−

√
5

2
≈ 0.38197 (5)

Thus in a bracketing triplet (a, b, c), b has a relative distance of 0.38197
from a and of 0.61803 from c . These fractions correspond to the golden
section so that the minimization is also called golden section search.
The convergence of this method is linear, meaning that additional
significant figures are won linearly with additional function evaluations.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 3 / 30

Minimization One dimension

Precision is machine limited

It is important to note that determination of a minimum can only be done
up to a precision corresponding to the square root of the machine
precision; e.g. for double 3 · 10−8 ≈

√
10−15. This can be understood

considering the Taylor expansion close to the minimum

f (x) ≈ f (b) +
1

2
f ′′(b)(x − b)2 (6)

The second term will be negligible against the first, i.e. a factor of the
floating point precision ε smaller, if

|x − b| <
√
ε|b|

√
2|f (b)|
b2f ′′(b)

(7)

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 4 / 30

Minimization One dimension

Interpolation methods I

A method that can converge faster but cannot be used exclusively is
parabolic interpolation. The idea is simple: If we draw a parabola
through three points (a, f (x)), (b, f (b)), (c , f (c)) bracketing a minimum,
we can determine an approximation to the minimum analytically via

x = b − 1

2

(b − a)2[f (b)− f (c)]− (b − c)2[f (b)− f (a)]

(b − a)[f (b)− f (c)]− (b − c)[f (b)− f (a)]
(8)

This doesn’t work for three collinear points, and it doesn’t distinguish
between a minimum and a maximum.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 5 / 30

Minimization One dimension

Interpolation methods II

A good marriage between golden section search and parabolic
interpolation is Brent’s method. It is keeping track of six function points
(not necessarily all distinct), a, b, u, v , w , and x , defined as follows: The
minimum is bracketed between a and b; x is the point with the very least
function value found so far; w is the point with the second least function
value; v is the previous value of w ; u is the point at which the function
was evaluated most recently. The principle of the algorithm: Parabolic
interpolation is attempted, fitting through the points x , v and w . To be
acceptable, the parabolic step must (i) fall within the bounding interval
(a, b), and (ii) imply a movement from the best current value x that is less
than half the movement of the step before last. This second criterion
ensures that the parabolic steps are converging to something and not just
bouncing around. If parabolic interpolation is rejected, intersection is used.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 6 / 30

Minimization Multidimensional methods

Steepest Descent I

The first idea for minimization in N dimensions is to reduce the task to
subsequent onedimensional minimizations.

Algorithm of the steepest descent method:

Start at point P0. As many times as needed, move from point Pi to the
point Pi+1 by minimizing along the line from Pi in the direction of the
local downhill gradient −∇f (Pi).

This algorithm is not very good as it will perform many small steps in
going down a long, narrow valley even if the valley has perfect quadratic
analytic form.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 7 / 30

Minimization Multidimensional methods

Steepest Descent II

The figures show how the steepest descent directions
zigzag, and how a descent starts off perpendicular to a
contour line and proceeds until it is parallel to another in
its local minimum, forcing a right angle turn.

The problem of this method is that we need to cycle many times through
all N basis vectors in order to reach the minimum. It would be desirable to
improve the choice of minimization directions for the N dimensional
function, in order to proceed along valley directions or to choose
“non-interfering” directions in which minimization along one direction
doesn’t spoil the previous minimizations along other directions.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 8 / 30

Minimization Multidimensional methods

Conjugate Gradient I

Such “non-interfering” directions are called “conjugate”. To express this
concept mathematically, we write down a Taylor series approximation of
f (x) in point P:

f (x) = f (P) +
∑

i

∂f

∂xi
xi +

1

2

∑
i ,j

∂2f

∂xi∂xj
xixj + . . .

≈ c − b · x +
1

2
x · A · x

(9)

with c ≡ f (P), b = −∇f (x)
∣∣
x=P

, [A]ij = ∂2f
∂xi∂xj

∣∣
x=P

. In the

approximation, the gradient of f is

∇f (x) = A · x− b (10)

How does the gradient ∇f (x) change as we move along some direction?

δ∇f = A · (δx) (11)

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 9 / 30

Minimization Multidimensional methods

Conjugate Gradient II

Suppose we have moved along some direction u to a minimum and now
propose to move along some new direction v. The condition that motion
along v not spoil our minimization along u is that the gradient stay
perpendicular to u, i.e. that the change in gradient be perpendicular to u:

0 = u · δ∇f = u · A · v (12)

If this equation holds for u and v they are called conjugate. If this
relation holds pairwise for all members of a set of vectors, this is called a
conjugate set. For functions that are quadratic forms, N line
minimizations in mutually conjugate directions will arrive exactly at the
minimum (where N is the dimension of the function).

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 10 / 30

Minimization Multidimensional methods

Conjugate Gradient III

Side note: The solution of linear systems of equations can be formulated
as a minimization problem.
To show that, we have to prove that
i) Solving A · x = b and
ii) Minimizing f (x) = 1

2x · A · x− x · b
are equivalent. (Note that we write x · b ≡ xTb, the result of which is a
scalar). We take A to be a symmetric positive definite matrix.
For that purpose we define the auxiliary function

E (x) =
1

2
(A · x− b) · A−1 · (A · x− b) (13)

As A−1 is also positive definite, we have E (x) ≥ 0. Thus E (x) is minimal
if and only if Ax− b = 0.
Some algebra on E (x) using AT = A yields

E (x) = f (x) +
1

2
b · A−1 · b (14)

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 11 / 30

Minimization Multidimensional methods

Conjugate Gradient IV

As b · A−1 · b ≥ 0 we find that E (x) and f (x) are minimal at the same
position, i.e.

f (x)
!
= min .⇐⇒ A · x− b = 0 (15)

The negative gradient of a function points in the direction of the steepest
descent; for f (x)

∇f (x) = A · x− b (16)

Thus we need to search for the point x in which the gradient of f (x)
disappears.
In order to spell out the conjugate gradient method of minimization, let’s
remember that, close to its minimum, a function f can be approximated as
a quadratic form:

f (x) = c − b · x +
1

2
x · A · x (17)

where A is the Hessian matrix.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 12 / 30

Minimization Multidimensional methods

Conjugate Gradient V

Starting with an arbitrary vector g0 and letting h0 = g0, two sequences of
vectors are constructed from the recurrence:

gi+1 = gi − λiA · hi hi+1 = gi+1 − γihi i = 0, 1, 2, . . . (18)

The vectors satisfy the orthogonality and conjugacy conditions:

gi · gj = 0 hi · A · hj = 0 gi · hj = 0 j < i (19)

The scalars λi and γi are given by

λi =
gi · gi

hi · A · hi
=

gi · hi

hi · A · hi
γi =

gi+1 · gi+1

gi · gi
(20)

Now suppose we knew the Hessian matrix A in (17). Then we could use
Eq. (18) to construct successively conjugate directions hi along which to
line-minimize. But so far we don’t know A.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 13 / 30

Minimization Multidimensional methods

Conjugate Gradient VI

A theorem helps out of this fix: suppose we have gi = −∇f (Pi) for some
point Pi where f is of the form (17). Suppose we proceed from Pi along
the direction hi to the local minimum of f located at a point Pi+1 and set
gi+1 = −∇f (Pi+1). Then, this gi+1 is the same vector as would have
been constructed by Eq. (18) (but it was done without knowledge of A!).
Proof: By Eq. (10), gi = −A · Pi + b, and

gi+1 = −A · (Pi + λhi) + b = gi − λA · hi (21)

with λ chosen to take us to the line minimum. But at the line minimum,
hi · ∇f = −hi · gi+1 = 0. Together with Eq. (21), we can solve for λ and
arrive at Eq. (20). With this value of λ, Eq. (21) becomes equal to
Eq. (18) which was to be shown.
The algorithm defined by Eq. (18)-(20) is known as Fletcher-Reeves
version of the conjugate gradient algorithm.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 14 / 30

Minimization Multidimensional methods

Conjugate Gradient VII

A small change introduced by Polak and Ribiere

γi =
(gi+1 − gi) · gi+1

gi · gi
(22)

performs better for functions that are not exactly quadratic forms.

Conjugate gradient methods are very efficient and recommended. But
they share one problem with all gradient-based methods: They cannot
distinguish between relative and absolute minima of a function. This
means that they proceed to the nearest (relative or absolute)
minimum and get stuck there.

Example: Crystal structure optimization: Potential energy surfaces
are very complicated multidimensional functions, and they can
possess numerous relative minima (metastable crystal structures).

There are two types of methods that can overcome this problem:
1 Molecular dynamics at finite temperature with friction.
2 Stochastic methods: Monte Carlo, genetic algorithms.

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 15 / 30

Genetic Algorithms Principle

Genetic Algorithms

Flow chart of GA optimization

E=0.5
E=0.3
E=0.2

E=1.2

criteria are met

Stop if convergence

Perform crossover and mutation

Create initial population of functions

new generation

Competition: Evaluate fitness and rank population

These steps are common to many GA methods; they differ by

1 the way the system to be optimized is represented

2 the rules of the competition

3 the way crossover and mutation are implemented

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 16 / 30

Genetic Algorithms Principle

Calculating the ground state of a quantum system I

A Hamiltonian in one dimension is given by

H = −1

2
∇2 + V (x) (23)

where V (x) is the external potential. The fitness function describing the
quality of a trial wave function is

E [ψ] =
〈ψ|H|ψ〉
〈ψ|ψ〉

(24)

For the random initial population, Gaussian like functions obeying the
boundary conditions ψj(a) = 0 and ψj(b) = 0 are chosen:

ψj(x) = A exp
[
−

x − xj)
2

σ2
j

]
(x − a)(b − x) (25)

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 17 / 30

Genetic Algorithms Principle

Calculating the ground state of a quantum system II

A smooth crossover between randomly chosen parent functions is defined
by

ψ
(n+1)
1 (x) = ψ

(n)
1 St(x) + ψ

(n)
2 [1− St(x)] (26)

′; ././(n+1)(x) = ψ
(n)
2 St(x) + ψ

(n)
1 [1− St(x)] (27)

where St(x) is a smooth step function, e.g.

St(x) =
1 + tanh x−p

w

2
(28)

where p and w are used to adjust the position and smoothness of the
crossover.
See I. Grigorenko and M.E. Garcia, Physica A 284, 131 (2000) and 291,
439 (2001).

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 18 / 30

Genetic Algorithms Practice

GA Program for solving the 1D Schroedinger equation I

#include <complex>

#include "defs.hh"

// Missing: prototypes for NAG routines

int main() {

int population = 100;

int generation_number = 100;

int mesh_size = 1000;

DMatrix wavefunction(mesh_size,population);

DVector energy(population);

DVector current_energy(generation_number);

double x_range = 100.0;

double x_step = x_range/mesh_size;

double perturbation = 0.1;

double dummy = 0.0; // argument for g05caf

// start random number generator

int iseed=5; g05cbf_(&iseed);

initialize_population(wavefunction,x_range);

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 19 / 30

Genetic Algorithms Practice

GA Program for solving the 1D Schroedinger equation II

for(int generation_i = 0; generation_i < generation_number;

generation_i++) {

for(int pop_i=0; pop_i<population; pop_i++)

energy[pop_i] = fitness(wavefunction,pop_i,x_range);

competition(wavefunction,energy);

current_energy[generation_i]

= fitness(wavefunction,0,x_range);

for(int pop_i=0; pop_i<(int)(population-2)/2; pop_i+=2) {

double random_num=1000.0*g05caf_(&dummy);

if(random_num > 10.0)

crossover(wavefunction,pop_i,x_range);

else

mutation(wavefunction,pop_i,x_range,perturbation);

}

}

// Missing: Output of first wave function as solution

}

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 20 / 30

Genetic Algorithms Practice

Initialization: Population of wave functions is created with
Gaussians of random width and normalized

void initialize_population(DMatrix& wavefunction,

double x_range) {

int population = wavefunction.column_number;

int mesh_size = wavefunction.row_number;

double x_step=x_range/mesh_size;

double dummy = 0.0; // argument for g05caf

double sigma;

double average_width=x_range/20.0;

wavefunction.zero();

for(int pop_i=0; pop_i<population; pop_i++) {

sigma=average_width*g05caf_(&dummy);

for(int minimum_i=0; minimum_i < 5; minimum_i++)

for(int mesh_i=0; mesh_i < mesh_size; mesh_i++)

wavefunction(mesh_i,pop_i)+=exp(-sqr((x_step*mesh_i

- x_range/2.0+6.0*(minimum_i-2))/sigma)/2.0)

* mesh_i*(mesh_size-mesh_i+1);

normalize(wavefunction,pop_i,x_range);

}

}Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 21 / 30

Genetic Algorithms Practice

Normalization

void normalize(DMatrix& wavefunction, int pop_i,

double x_range) {

int mesh_size = wavefunction.row_number;

double x_step=x_range/mesh_size;

double sum=0.0;

for(int mesh_i=0; mesh_i < mesh_size; mesh_i++)

sum += sqr(wavefunction(mesh_i,pop_i));

double weight = sqrt(sum*x_step);

for(int mesh_i=0; mesh_i < mesh_size; mesh_i++)

wavefunction(mesh_i,pop_i)/=weight;

}

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 22 / 30

Genetic Algorithms Practice

Fitness: Applying Hamiltonian to wave function yields the
energy that will be minimal for the ground state solution

double fitness(DMatrix& wavefunction, int pop_i, double x_range) {

int mesh_size = wavefunction.row_number;

double x_step=x_range/mesh_size; double sum=0.0, sum1=0.0;

for(int mesh_i=1; mesh_i < mesh_size-1; mesh_i++)

sum += sqr((wavefunction(mesh_i+1,pop_i)

- wavefunction(mesh_i-1,pop_i))/2.0);

sum+=(sqr((wavefunction(1,pop_i)-wavefunction(0,pop_i))/2.0)

+ sqr((wavefunction(mesh_size-1,pop_i)

- wavefunction(mesh_size-2,pop_i))/2.0))/2.0;

for(int mesh_i=1; mesh_i < mesh_size-1; mesh_i++)

sum1 += sqr(wavefunction(mesh_i,pop_i))

* potential(mesh_i,mesh_size,x_range);

sum1 += (sqr(wavefunction(0,pop_i))

* potential(0,mesh_size,x_range)

+ sqr(wavefunction(mesh_size-1,pop_i))

* potential(mesh_size-1,mesh_size,x_range))/2.0;

return((sum/x_step + sum1*x_step)/2.0);

}
Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 23 / 30

Genetic Algorithms Practice

Potential V (x)

Here: a potential with five minima, representing a 1D Xe cluster.

double potential(int mesh_i,int mesh_size,double x_range) {

double x_step=x_range/mesh_size;

double charge = 54.0;

double sum = 0.0;

int well_num=5;

for(int well_i=0; well_i<well_num; well_i++)

sum -= charge/sqrt(sqr(mesh_i*x_step-x_range/2.0+6.0

* (well_i-(int)(well_num/2)))+sqr(2.55))

* exp(-0.04*sqr(mesh_i*x_step-x_range/2.0+6.0

* (well_i-(int)(well_num/2))));

return(sum);

}

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 24 / 30

Genetic Algorithms Practice

Competition: Wave functions are ranked by energy, the
best are copied into lower half of population indices

void competition(DMatrix& wavefunction, DVector& energy) {

int population = wavefunction.column_number;

int mesh_size = wavefunction.row_number;

int m1=1, m2=population; char order=’A’;

static IVector irank(population);

int ifail=0;

m01daf_(energy.getpointer(),&m1,&m2,&order, irank.getpointer(),&ifail);

if(ifail!=0) complain_and_exit("NAG m01daf failed");

int pop_j = 0;

for(int pop_i=0; pop_i<population; pop_i++)

if((irank[pop_i]<(int)(population/2)+1)&&(pop_i!=pop_j)) {

// copy parent pop_i to position pop_j

for(int mesh_i=0; mesh_i < mesh_size; mesh_i++)

wavefunction(mesh_i,pop_j)=wavefunction(mesh_i,pop_i);

pop_j++;

}

}
Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 25 / 30

Genetic Algorithms Practice

Crossover: Two smooth new wave functions are formed
from two old ones

void crossover(DMatrix& wavefunction, int pop_i,

double x_range) {

int population = wavefunction.column_number;

int mesh_size = wavefunction.row_number;

double x_step=x_range/mesh_size;

double dummy = 0.0; // argument for g05caf

int rand_pos = (int)((mesh_size-1)*g05caf_(&dummy)+0.5)+1;

double rand_width = (0.2 + 0.05*(0.5-g05caf_(&dummy)))*x_range;

int rand_individual1 = (int)((population/2-1)*g05caf_(&dummy)+0.5)+1;

int rand_individual2 = (int)((population/2-1)*g05caf_(&dummy)+0.5)+1;

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 26 / 30

Genetic Algorithms Practice

Crossover II

for(int mesh_i=0; mesh_i < mesh_size; mesh_i++) {

double rand_tanh=blend(mesh_i,x_step,rand_pos,rand_width);

wavefunction(mesh_i,population/2+pop_i)

= wavefunction(mesh_i,rand_individual2)*rand_tanh

+ wavefunction(mesh_i,rand_individual1)*(1.0-rand_tanh);

wavefunction(mesh_i,population/2+pop_i+1)

= wavefunction(mesh_i,rand_individual1)*rand_tanh

+ wavefunction(mesh_i,rand_individual2)*(1.0-rand_tanh);

}

normalize(wavefunction,population/2+pop_i,x_range);

normalize(wavefunction,population/2+pop_i+1,x_range);

}

double blend(int mesh_i,double x_step,int rand_pos,

double rand_width) {

return((1.0+tanh((mesh_i-rand_pos)*x_step/rand_width))/2.0);

}

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 27 / 30

Genetic Algorithms Practice

Mutation: With low probability, a Gaussian of random
width and position is added to a pair of wave functions

void mutation(DMatrix& wavefunction,int pop_i,double x_range,

double perturbation) {

int population = wavefunction.column_number;

int mesh_size = wavefunction.row_number;

double x_step=x_range/mesh_size;

double dummy = 0.0; // argument for g05caf

double sigma=0.03*x_range*(1.5-g05caf_(&dummy));

int rand_individual1

= (int)((population/2-1)*g05caf_(&dummy)+0.5)+1;

double signed_rand = 0.5-g05caf_(&dummy);

int rand_pos = (int)((mesh_size-1)*g05caf_(&dummy)+0.5)+1;

for(int mesh_i=0; mesh_i < mesh_size; mesh_i++)

wavefunction(mesh_i,population/2+pop_i)

= wavefunction(mesh_i,rand_individual1)

+ perturbation*signed_rand

*exp(-sqr((mesh_i-rand_pos)*x_step/sigma))

*(mesh_size-mesh_i)*mesh_i*sqr(x_step);

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 28 / 30

Genetic Algorithms Practice

Mutation II

sigma=0.1*x_range*(1.5-g05caf_(&dummy));

rand_individual1

= (int)((population/2-1)*g05caf_(&dummy)+0.5)+1;

signed_rand = 0.5-g05caf_(&dummy);

rand_pos = (int)((mesh_size-1)*g05caf_(&dummy)+0.5)+1;

for(int mesh_i=0; mesh_i < mesh_size; mesh_i++)

wavefunction(mesh_i,population/2+pop_i+1)

= wavefunction(mesh_i,rand_individual1)

+ perturbation*signed_rand

*exp(-sqr((mesh_i-rand_pos)*x_step/sigma))

*(mesh_size-mesh_i)*mesh_i*sqr(x_step);

normalize(wavefunction,population/2+pop_i,x_range);

normalize(wavefunction,population/2+pop_i+1,x_range);

}

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 29 / 30

Genetic Algorithms Practice

Genetic Algorithms: Practice

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 10 20 30 40 50 60 70 80 90 100x

ground state electron density
potential

Harald O. Jeschke (ITP, Uni Frankfurt) Numerical Methods November 10, 2006 30 / 30

	Minimization
	One dimension
	Multidimensional methods

	Genetic Algorithms
	Principle
	Practice

