# Exercises for Computational Methods in Solid State Theory 

SS 2013

## Exercise Set 8

(Due date: Tuesday, July 9, 2013)

Exercise 8 (Hartree-Fock (HF) mean field calculations) (10 points)

The physical properties of $\kappa$-(BEDT-TTF) ${ }_{2} \mathrm{X}$ charge transfer salts can be described by a Hubbard model on the anisotropic triangular lattice which is given as

$$
\begin{equation*}
\mathrm{H}=\sum_{\langle\mathfrak{i j \rangle}, \sigma} \mathrm{t}_{i \mathfrak{j}} \mathrm{c}_{i \sigma}^{\dagger} \mathrm{c}_{\mathfrak{j} \sigma}+\mathrm{u} \sum_{i} n_{\mathfrak{i} \uparrow} n_{i \downarrow}-\mu \sum_{\mathfrak{i} \sigma} c_{i \sigma}^{\dagger} \mathrm{c}_{i \sigma} \tag{1}
\end{equation*}
$$

where $c_{i \sigma}^{\dagger}\left(c_{i \sigma}\right)$ are creation (annihilation) operators for electrons of spin $\sigma, n_{i \sigma}=$ $c_{i \sigma}^{\dagger} c_{i \sigma}$ is the density of $\sigma$ spin electrons and $t_{i j}$ is the hopping amplitude. We choose to study here the case where $\mathrm{t}_{\mathrm{ij}}=\mathrm{t}$ in two of the directions of the triangular lattice, and $\mathrm{t}_{\mathrm{ij}}=\mathrm{t}^{\prime}$ in the third direction (see Figure 1).


Figure 1: Anisotropic triangular lattice.

To study this model in the Hartree-Fock approximation we can consider two particular mean fields:

$$
\begin{equation*}
\mathrm{H}^{\mathrm{MF} 1}=\mathrm{H}_{\uparrow}+\mathrm{H}_{\downarrow}+\mathrm{C}, \tag{2}
\end{equation*}
$$

with:

$$
\begin{aligned}
\mathrm{H}_{\uparrow} & =-\mathrm{t} \sum_{\langle i, j\rangle} c_{i, \uparrow}^{\dagger} c_{j, \uparrow}+u \sum_{i} n_{i, \uparrow}\left\langle n_{i, \downarrow}\right\rangle, \\
\mathrm{H}_{\downarrow} & =-t \sum_{\langle i, j\rangle} c_{i, \downarrow}^{\dagger} c_{j, \downarrow}+u \sum_{i}\left\langle n_{i, \uparrow}\right\rangle n_{i, \downarrow}, \\
\mathrm{C} & =-\mathrm{u} \sum_{i}\left\langle n_{i, \uparrow}\right\rangle\left\langle n_{i, \downarrow}\right\rangle .
\end{aligned}
$$

and

$$
\mathrm{H}^{\mathrm{MF} 2}=\mathrm{C}^{\dagger}\left(\begin{array}{ll}
\mathrm{H}^{\uparrow \uparrow} & \mathrm{H}^{\uparrow \downarrow}  \tag{3}\\
\mathrm{H}^{\downarrow \uparrow} & \mathrm{H}^{\downarrow \downarrow}
\end{array}\right)_{2 \mathrm{~N} \times 2 \mathrm{~N}} \mathrm{C}
$$

with:

$$
\begin{aligned}
& \mathrm{C}^{\dagger}=\left(\mathrm{c}_{1, \uparrow}^{\dagger}, \ldots, \mathrm{c}_{\mathrm{N}, \uparrow}^{\dagger}, \mathrm{c}_{1, \downarrow}^{\dagger}, \ldots, \mathrm{c}_{\mathrm{N}, \downarrow}^{\dagger}\right) \\
& \mathrm{H}_{\mathrm{i}, \mathrm{j}}^{\uparrow \uparrow}=\left(\mathrm{U}\left\langle n_{i \downarrow}\right\rangle-\mu\right) \delta_{i, j}+\mathrm{T}_{i, j} \\
& \mathrm{H}_{i, j}^{\uparrow \downarrow}=-\mathrm{U}\left\langle\mathrm{~S}_{i}^{-}\right\rangle \delta_{i, j} \\
& \mathrm{H}_{i, j}^{\downarrow \uparrow}=-\mathrm{U}\left\langle\mathrm{~S}_{i}^{+}\right\rangle \delta_{i, j} \\
& \mathrm{H}_{\mathrm{i}, \mathrm{j}}^{\downarrow \downarrow}=\left(\mathrm{U}\left\langle n_{i \uparrow}\right\rangle-\mu\right) \delta_{i, j}+\mathrm{T}_{i, j} \\
& \mathrm{H}^{\mathrm{MF} 2}=-\mathrm{t} \sum_{\langle i, j\rangle, \sigma} \mathrm{c}_{i, \sigma}^{\dagger} \mathrm{c}_{j, \sigma}+\mathrm{u} \sum_{i}\left[\left\langle n_{i, \downarrow}\right\rangle n_{i, \uparrow}+\left\langle n_{i, \uparrow}\right\rangle n_{i, \downarrow}-\left\langle n_{i, \uparrow}\right\rangle\left\langle n_{i, \downarrow}\right\rangle\right] \\
&-\mathrm{U} \sum_{i}\left[\left\langle S_{i}^{+}\right\rangle c_{i, \downarrow}^{\dagger} c_{i, \uparrow}+\left\langle S_{i}^{-}\right\rangle c_{i, \uparrow}^{\dagger} c_{i, \downarrow}-\left\langle S_{i}^{+}\right\rangle\left\langle S_{i}^{-}\right\rangle\right]
\end{aligned}
$$

and in this exercise we will use the particular case where all the spin are in the xz-plane: $\left\langle S_{i}^{+}\right\rangle=\left\langle S_{i}^{-}\right\rangle=\left\langle S_{i}^{x}\right\rangle$
a) Using MF1 compute: the ground state energy per site, the gap and the local magnetization $\left\langle\mathrm{S}^{z}\right\rangle$ at $\mathrm{U} / \mathrm{t}=1$ and $\mathrm{U} / \mathrm{t}=16$ at $\mathrm{t}^{\prime} / \mathrm{t}=0,0.5$ for a system of size $10 \times 10$.
b) Using MF2 compute: the ground state energy, the local magnetizations $\left\langle\mathrm{S}^{z}\right\rangle$ and $\left\langle\mathrm{S}^{x}\right\rangle$ at $\mathrm{U} / \mathrm{t}=16$ at $\mathrm{t}^{\prime} / \mathrm{t}=0.5,0.8,1$ for a system of size $10 \times 10$ and $12 \times 12$.
c) How could you define/describe the phase corresponding to each of the cases of question a) and b)?
d) Discuss the difference between results for the systems of size $10 \times 10$ and $12 \times 12$.

The computation should be realized in real space and at half-filling for a total magnetization equal to zero.

