Goethe-Universität Frankfurt

Fachbereich Physik

Institut für Theoretische Physik
Dr. Harald O. Jeschke
Dr. Francesc Salvat-Pujol

GOETHE

UNIVERSITÄT
FRANKFURT AM MAIN

Frankfurt, June 18, 2013

Exercises for Computational Methods in Solid State Theory

SS 2013

Exercise Set 7

(Due date: Tuesday, July 2, 2013)

Exercise 7 (Susceptibility in random phase approximation) (10 points)
a) We again use the one band tight binding model we determined for $\mathrm{Sr}_{2} \mathrm{CuO}_{2} \mathrm{Cl}_{2}$ (you can get a simple program from http://itp.uni-frankfurt.de/~jeschke/CMSST2013/exercise7_ressources/).
Write a program to determine the 2D Fermi surface of $\mathrm{Sr}_{2} \mathrm{CuO}_{2} \mathrm{Cl}_{2}$ at $\mathrm{k}_{\mathrm{z}}=0$ and plot it. Repeat that for $5 \%, 10 \%$ and 20% hole doping.
b) Calculate the noninteracting susceptibility of κ - $(\text { BEDT-TTF })_{2} \mathrm{Cu}_{2}(\mathrm{CN})_{3}$ via

$$
\begin{equation*}
\chi_{s t}^{p q}(\overrightarrow{\mathrm{q}}, \omega)=-\frac{1}{\mathrm{NN}_{\vec{k}}} \sum_{\vec{k}, \mu v}\left[f\left(\varepsilon_{v}(\overrightarrow{\mathrm{k}}+\overrightarrow{\mathrm{q}})\right)-\mathrm{f}\left(\varepsilon_{\mu}(\overrightarrow{\mathrm{k}})\right)\right] \frac{\mathrm{a}_{\mu}^{s}(\overrightarrow{\mathrm{k}}){a_{\mu}^{p}}^{p}(\overrightarrow{\mathrm{k}}) \mathrm{a}_{v}^{\mathrm{q}}(\overrightarrow{\mathrm{k}}+\overrightarrow{\mathrm{q}}) \mathrm{a}_{v}^{\mathrm{t} *}(\overrightarrow{\mathrm{k}}+\overrightarrow{\mathrm{q}})}{\omega+\varepsilon_{v}(\overrightarrow{\mathrm{k}}+\stackrel{\rightharpoonup}{\mathrm{q}})-\varepsilon_{\mu}(\overrightarrow{\mathrm{k}})+\mathrm{i} 0^{+}} . \tag{1}
\end{equation*}
$$

where p, q, s, t are orbital indices, μ, v are band indices and the \mathfrak{a}_{μ}^{s} correspond to the components of the eigenvectors of the tight binding Hamiltonian; $\varepsilon_{\nu}(\overrightarrow{\mathrm{k}})$ are the band energies. Use the tight binding model provided at http://itp.uni-frankfurt.de/~jeschke/CMSST2013/exercise7_ressources/.
Plot the static, homogeneous noninteracting susceptibility

$$
\begin{equation*}
\chi_{\mathrm{S}}(\stackrel{\rightharpoonup}{\mathbf{q}})=\frac{1}{2} \sum_{s p} \chi_{s s}^{\mathrm{pp}}(\stackrel{\rightharpoonup}{\mathrm{q}}, \omega=0), \tag{2}
\end{equation*}
$$

along the path $\Gamma-X-M-\Gamma$ with $X=(0, \pi, 0)$ and $M=(0, \pi, \pi)$ in the Brillouin zone.
c) Calculate the RPA enhanced transversal susceptibility $\chi_{\text {RPA }}^{+-}(\stackrel{\rightharpoonup}{\mathbf{q}}, \omega)$. Plot $\chi_{\text {RPA }}^{+-}(\stackrel{\rightharpoonup}{\mathbf{q}}, \omega=$ $0)$ along the same path through the Brillouin zone.

