
6. Response functions

6.1 Random Phase Approximation

The truncation of the equation of motion for the Greens function with the

Hartree Fock mean field approximation transforms the Hamiltonian into

an effective single particle operator; this too simple treatment of the influ-

ence of interactions leads to a lack of realism. A better approach than the

truncation of the equation of motion hierarchy is the approximate evalu-

ation also of the higher order equations of motion. This allows to better

account for the interaction as the full Hamiltonian enters the equation of

motion at each step.1

The so called random phase approximation (RPA) involves replacement of

operator products by averages as in the mean field approximation (neglect

of the fluctuation of averages). For the single particle Greens function

G⇀
kσ

(ω) = 〈〈c⇀
kσ

; c
†
⇀
kσ
〉〉 (6.1)

the result is again the Hartree-Fock result.

The magnetic susceptibility is an important quantity describing the re-

sponse of a material to an external magnetic field
⇀

H(t) =
⇀

H0e
−(ω+iδ)t:

〈Mα〉(t) = 〈Mα〉−
∑
β

∫∞
−∞ dt ′〈〈Mα(t);Mβ(t ′)〉〉Hβ0e−i(ω+iδ)t ′ (6.2)

with cartesian directions α, β. As the Greens function is homogeneous in

time we have

〈Mα〉(t) = 〈Mα〉−
∑
β

∫∞
−∞ dt ′〈〈Mα;Mβ(t ′ − t)〉〉Hβ0e−i(ω+iδ)(t ′−t)e−i(ω+iδ)t

= 〈Mα〉−
∑
β

∫∞
−∞ dt ′〈〈Mα;Mβ(t ′)〉〉e−i(ω+iδ)t ′Hβ(t)

1This chapter is based on K. Elk, W. Gasser, “Die Methode der Greenschen Funktionen in der
Festkörperphysik”, Akademie-Verlag Berlin 1979, and W. Nolting, “Grundkurs Theoretische Physik 7,
Viel-Teilchen-Theorie”, Springer 2009.
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(6.3)

with a field independent part of the magnetization 〈Mα〉 which is impor-

tant for ferromagnetic systems and the second part describing the magne-

tization induced by an external magnetic field. This part is proportional

to H(t); the prefactor represents the magnetic susceptibility χ:

〈Mα〉(t) = 〈Mα〉+
∑
β

χαβ(ω)Hβ(t) (6.4)

Comparison yields

χαβ(ω) =

∫∞
−∞ dt e−i(ω+iδ)t〈〈Mα;Mβ(t)〉〉 ≡ −〈〈Mα;Mβ〉〉(ω−iδ) (6.5)

Thus, χαβ(ω) is given by the Fourier transform of the Greens function.

We can now replace the magnetic moment operator
⇀

Mi at site i by a spin

operator
⇀

Si to obtain

χ
µν
ij (ω) = − 〈〈Mµ

i ;Mν
j 〉〉(ω) = − g2µ2

B〈〈Sµi ;Sνj 〉〉(ω) (6.6)

with gyromagnetic factor g and Bohr magneton µB. Of particular interest

are the longitudinal susceptibility

χzzij (ω) = − g2µ2
B〈〈Szi ;Szj 〉〉(ω) (6.7)

and the transversal susceptibility

χ+−
ij (ω) = − g2µ2

B〈〈S+
i ;S−

j 〉〉(ω) where S±i = Sxi ± iSyi (6.8)

The operators Szi , S
+
i and S−

i can again be replaced by creation and anni-

hilation operators:

Szi =
1

2
(ni↑ − ni↓) , S+

i = c
†
i↑ci↓ , S−

i = c
†
i↓ci↑ (6.9)

which leads to

χzzij (ω) = −
1

4
g2µ2

B(2δσσ ′ − 1)〈〈niσ;njσ ′〉〉(ω) (6.10)

and

χ+−
ij (ω) = − g2µ2

B〈〈c†i↑ci↓; c†i↓ci↑〉〉(ω) (6.11)
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linking the susceptibilities to special two particle Greens functions. We

will now apply the random phase approximation to the calculation of the

transversal magnetic susceptibility within the Hubbard model

H =
∑
⇀
kσ

(ε⇀
k
− µ)c†⇀

kσ
c⇀
kσ

+
U

N

∑
⇀
k
⇀
k1

⇀
q

c
†
⇀
k↑c

⇀
k−

⇀
q↑c
†
⇀
k1↓
c⇀
k1+

⇀
q↓ ; (6.12)

the random phase approximation will be valid in the limit of weak inter-

actions. In
⇀

k space we have for the susceptibility

χ+−(
⇀
q,ω) = − g2µ2

B

∑
⇀
k
⇀
k ′

〈〈c†⇀
k↑c

⇀
k+

⇀
q↓; c

†
⇀
k ′↓c

⇀
k ′−⇀

q↑〉〉(ω) (6.13)

The equation of motion for this two-particle Greens function is

ω〈〈c†⇀
k↑c

⇀
k+

⇀
q↓; c

†
⇀
k ′↓c

⇀
k ′−⇀

q↑〉〉(ω) =
(〈n⇀

k↑〉− 〈n⇀
k+

⇀
q↓〉
)
δ⇀
k ′,

⇀
k+

⇀
q
+

+
(
ε⇀
k+

⇀
q

− ε⇀
k

)〈〈c†⇀
k↑c

⇀
k+

⇀
q↓; c

†
⇀
k ′↓c

⇀
k ′−⇀

q↑〉〉(ω)+

+
U

N

∑
⇀
k1,⇀q1

〈〈(c†⇀
k↑c
†
⇀
k1↑
c⇀
k1−

⇀
q1↑c

⇀
k+

⇀
q−

⇀
q1↓ − c†⇀

k+
⇀
q1↑
c
†
⇀
k1↓
c⇀
k1+

⇀
q1↓c

⇀
k+

⇀
q↓); c

†
⇀
k ′↓c

⇀
k ′−⇀

q↑〉〉(ω)

(6.14)

According to the principles of the random phase approximation the excess

operators in the higher order Greens functions are replaced by averages:

c
†
⇀
k↑c
†
⇀
k1↑
c⇀
k1−

⇀
q1↑c

⇀
k+

⇀
q+

⇀
q1↓ ≈ 〈n⇀

k1↑〉δ⇀
q1,0c

†
⇀
k↑c

⇀
k+

⇀
q↓−〈n⇀

k↑〉δ⇀
k
⇀
k1−

⇀
q1
c
†
⇀
k−

⇀
q1↑
c⇀
k−

⇀
q−

⇀
q1↓

(6.15)

Here, conservation of momentum and spin was used:

〈c†⇀
kσ
c⇀

k ′σ ′
〉 = 〈n⇀

kσ
〉δ⇀
k

⇀

k ′
δσσ ′ (6.16)

Also

c
†
⇀
k+

⇀
q1↑
c
†
⇀
k1↓
c⇀
k1+

⇀
q1↓c

⇀
k+

⇀
q↓ ≈ 〈n⇀

k1↓〉δ⇀
q1,0c

†
⇀
k↑c

⇀
k+

⇀
q↓−〈n⇀

k+
⇀
q↓〉δ⇀

k1,
⇀
k+

⇀
q
c
†
⇀
k+

⇀
q1↑
c⇀
k+

⇀
q+

⇀
q1↓

(6.17)

This yields(
ω−ω↑↓⇀

k
(

⇀
q)
)〈〈c†⇀

k↑c
⇀
k+

⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−⇀
q↑〉〉(ω) =

(〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉
)

[
δ⇀
k ′,

⇀
k+

⇀
q

−
U

N

∑
⇀

k ′′

〈〈c†⇀
k ′′↑
c⇀

k ′′+⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−⇀
q↑〉〉(ω)

]
(6.18)
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with the Stoner single particle excitation spectrum

ωσσ ′
⇀
k

(
⇀
q) = ε⇀

k+
⇀
q

− ε⇀
k
+U(n−σ ′ − n−σ) (6.19)

Now we divide Eq. (6.18) by
(
ω−ω↑↓⇀

k
(

⇀
q)
)

and sum over
⇀

k:

∑
⇀
k

〈〈c†⇀
k↑c

⇀
k+

⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−⇀
q↑〉〉(ω) =

∑
⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k

(
⇀
q)

δ⇀
k ′,

⇀
k+

⇀
q

−
∑

⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k

(
⇀
q)

U

N

∑
⇀

k ′′

〈〈c†⇀
k ′′↑
c⇀

k ′′+⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−⇀
q↑〉〉(ω) (6.20)

After renaming summation indices this means

∑
⇀
k

〈〈c†⇀
k↑c

⇀
k+

⇀
q↓; c

†
⇀

k ′↓
c⇀

k ′−⇀
q↑〉〉(ω) =

∑
⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k

(
⇀
q)

δ⇀
k ′,

⇀
k+

⇀
q

1 +
U

N

∑
⇀
k ′′

〈n⇀
k ′′↑〉− 〈n⇀

k ′′+⇀
q↓〉

ω−ω↑↓⇀
k ′′

(
⇀
q)

(6.21)

with the susceptivility of the Stoner model

χ0(
⇀
q,ω) = g2µ2

B

∑
⇀
k

〈n⇀
k↑〉− 〈n⇀

k+
⇀
q↓〉

ω−ω↑↓⇀
k

(
⇀
q)

(6.22)

This yields for the transverse susceptibility

χ+−(
⇀
q,ω) =

χ0(
⇀
q,ω)

1 − U
Ng2µ2

B
χ0(

⇀
q,ω)

(6.23)

The denominator in this RPA expression for the susceptibility can become

small for certain
⇀
q and ω values so that the susceptibility becomes big.
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