
Computational Methods in Solid State Theory

Harald O. Jeschke

Institut für Theoretische Physik
Goethe-Universität Frankfurt am Main

Max-von-Laue-Straße 1, 60438 Frankfurt
Email: jeschke@itp.uni-frankfurt.de

April 10, 2012

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



Overview

Abstract

This lecture gives an overview of computational methods that are
important for the condensed matter theorist.

The lecture will focus on methods that are suitable for solving model
Hamiltonians in solid state theory.

Part of the lecture will deal with dynamical mean field theory, a
method that is approximate in finite dimension but has been
increasingly successful over the last twenty years.

The second part of the lecture will deal with numerical methods like
exact diagonalization and quantum Monte Carlo.

The lecture will be enriched by practical exercises and discussion of
available software or libraries and methods of implementation.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



Overview Topics

Incomplete list of topics

1 Tight binding

2 Density functional theory

3 Hartree Fock mean field

4 Matsubara Greens functions; analytic continuation

5 Random phase approximation

6 Exact Diagonalization

7 Monte Carlo

8 Quantum Monte Carlo

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



Overview Motivation

Motivation

Evaluation of theoretical models: Many theoretical approaches
involve a numerical evaluation of resulting equations as a final step.
This is not a trivial part: Success of a theory often depends crucially
on the feasibility of its numerical evaluation.

Making contact to real materials: Nearly all measurable quantities
in real materials are off limits for analytical computation. If you want
to compare a theory to experiment, numerical methods are needed to
account for the complexity of chemical interactions, real lattice
structures, interplay of various phenomena present at the same time,
and so on.

Introducing computational physics: This area of physics is of
growing importance as computers become more powerful and as more
and more nontrivial aspects of experiment and technology can be
computed or simulated, yet it is hardly mentioned in physics classes.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



Overview Motivation

My perspective

Fields of research Methods I use

Tight binding molecular dynam-
ics on time dependent potential
energy surfaces

Matrix diagonalization
Integration of differential equa-
tions
Fast Fourier transform

Dynamical mean field theory for
lattice models (Hubbard, Ander-
son)

Integral equations
Splines
Exact diagonalization

Ab initio density functional theory Minimization techniques

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



Overview Motivation

Aims of the lecture

Giving a feeling for “What’s inside the box?” for a number of
computational methods.

Discussion of strengths, weaknesses, approximations, pitfalls of widely
used methods.

Providing some insight into what can be calculated and how in
theoretical physics. Knowing how to calculate a quantity makes it
more accessible or intelligible.

Pointing out some sources of information and software for
computational tasks.

Giving you the confidence “I can calculate that, too!”.

Studying many interesting details. Everybody has heard “exact
diagonalization” or “quantum Monte Carlo” as catchwords, but what
are actually the parameters influencing their results?

What are your additional wishes?
Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Motivation

C++ crash course

Why C++?

C++ is a multi-paradigm programming language that supports
procedural programming, data abstraction, object-oriented
programming, and generic programming.

It is used widely in open source software. It is a non-proprietary
language. Good free compilers are available.

You can call routines and functions written in other languages from
C++ (examples Fortran, Perl).

It is fully developed and standardized and suitable for any size of
project. It is sufficiently general to serve for an extremely wide range
of purposes and problems.

It is a compiled language that can achieve highest levels of
performance (if you make sure performance critical parts are C like or
can be efficiently optimized by the compiler).

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Motivation

C++ crash course

But: C++ may not be suitable for every problem.

One always needs to preserve the flexibility to learn an additional
language (say perl, python).

It is often necessary read and modify existing codes (for example
Fortran77/90).

This crash course is intended to give you a taste of C++.

Numerical methods become practical and useful when implemented
on a computer.

Preparation for the discussion of implementation details.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course First steps in C++

Compilation of minimal C++ program

The minimal C++ program is

int main() {}

To compile and run this program, enter the following three lines at a unix
command prompt:

$ echo "int main() {}" > example0.cc

$ g++ example0.cc -o example0

$ ./example0

This creates the program file example0.cc (line 1), compiles it (line 2)
and executes it (line 3).
The g++ command (gnu c++ compiler) does a number of things; try
using its verbose mode by typing g++ -v in the example.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course First steps in C++

Compilation of minimal C++ program I

It first calls cc1plus to produce assembler code (with extension .s,
written to some file in /tmp).

Next, it calls the assembler as to produce an object file (with
extension .o, again only temporarily in /tmp).

Finally it calls collect2. collect2 looks at the object files (the one
produced by as and others that belong to C++), builds an additional
object if needed, and invokes the linker ld which produces the
executable.

For a slightly more complicated program that contains a preprocessor
directive like #include, cc1plus would also call the preprocessor
cpp.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course First steps in C++

Compilation of minimal C++ program II

To understand the compilation process better, you can produce
intermediate results:

$ g++ -E example0.cc -o example0.E

$ g++ -S example0.cc -o example0.s

$ g++ -c example0.cc -o example0.o

$ g++ example0.o -o example0

The first line produces precompiled code (still C++), the second
assembler code; they are text files and you can inspect them.
The third line produces the object file which you can analyse with the
command nm:

$ nm example0.o

U __gxx_personality_v0

0000000000000000 T main

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course First steps in C++

Compilation of minimal C++ program III

This shows you the symbols in the object file, one Undefined, another in
the Text section. The last of the four lines above invokes the linker and
produces a dynamic executable; you can find out which shared libraries it
looks for at runtime using the ldd command:

$ ldd example0

linux-vdso.so.1 => (0x00007fffaabff000)

libstdc++.so.6 => /usr/lib/libstdc++.so.6 (0x00002b57c00ae000)

libm.so.6 => /lib/libm.so.6 (0x00002b57c03b5000)

libgcc_s.so.1 => /lib/libgcc_s.so.1 (0x00002b57c0638000)

libc.so.6 => /lib/libc.so.6 (0x00002b57c084e000)

/lib64/ld-linux-x86-64.so.2 (0x00002b57bfe8b000)

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Input and Output

Standard Library I

Output
In C++, the inevitable “Hello, world!” program reads like this:

#include <iostream>

int main() {

std::cout << "Hello, world!\n";

}

The first line makes the precompiler include the input/output streams
library. The only command in main() uses the standard cout stream to
write the “Hello, world!” string and a newline character to standard
output. Values sent to cout with the << operator are converted into a
sequence of characters.
The std:: stipulates that the cout of the standard namespace is to be
used, rather than some other cout.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Input and Output

Standard Library II

You can make the std name accessible without std:: by dumping the
std namespace into the global namespace:

#include <iostream>

using namespace std;

int main() {

cout << "Hello, world!\n";

}

The iostream library defines output for every built-in type. It is easy to
define output for a user-defined type.

Input
cin is the standard input stream, and >> is used as input operator. The
following program performs cm ↔ inch conversions:

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Input and Output

Standard Library III

#include <iostream>

using namespace std;

int main() {

const double factor = 2.54;

double x, in, cm;

char ch=0;

cout << "enter length (x cm or y in): ";

cin >> x >> ch;

switch(ch) {

case ’i’:

in=x; cm=x*factor; break;

case ’c’:

in=x/factor; cm=x; break;

default:

in=cm=0; break;

}

cout << in << " in = " << cm << " cm\n";

}
Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Input and Output

Standard Library IV

Strings
The standard library provides a string type and various string operations,
such as concatenation that is written like addition:

#include <iostream>

#include <string>

using namespace std;

int main() {

string s1="Hello";

string s2="world!";

string s3=s1+", "+s2+"\n";

cout << s3;

}

$ ./example2

Hello, world!

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Input and Output

Standard Library V

Further examples of string operations:
substr() that returns a string that starts at the index given in the first
argument (C++ counting starts at 0!), of the length given by the second
argument.
replace() replaces part of a string with another, starting at the index in
the first argument and replacing the number of characters given by the
second.

string s1="Good bye, world!\n";

string s2=s1.substr(0,8)+"!\n";

s1.replace(0,8,"Hello");

cout << s1 << s2;

$ ./example3

Hello, world!

Good bye!

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Types and arrays

Built-in types

C++ provides a number of types; beyond that, the user can define his own
shorthand for complicated types using typedef. Besides, composite
objects can be defined using classes.
Some important types:

There is the logical bool with the values true or false (1 or 0).

There is char with a range from -128 to 127, represented by 1 byte.
There is unsigned char with a range from 0 to 255. There are
many different types of int, like short int, int, and long int

which are all by default signed. The number of bytes corresponding
to them and thus the ranges are machine dependent.

Then there is float, double and long double, providing floating
point numbers of different precision (and thus different overflow and
underflow values), again machine dependent.

Complex types in C++ are provided by a standard library complex.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Types and arrays

Arrays I

Dynamic memory allocation in C++ is performed by the new command
which returns a pointer to the memory location of the first element of the
array.

#include <cstdlib>

#include <iostream>

using namespace std;

int main() {

int num=20;

double* vec=new double[num];

if(vec == NULL) {

cerr << "Not enough memory";

exit(1);

}

for(int i=0; i<num; i++) vec[i]=0.0;

}

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Types and arrays

Arrays II

The NULL pointer is returned if there was not enough memory
available.

The elements of the newly allocated array are not initialized;
therefore, they are set to zero in the example program.

The new command can also allocate memory for arrays of any user
defined type or class.

Elements are accessed by square brackets.

The first element has index 0, the last index num-1.

The programmer is responsible for making sure the array index
doesn’t leave this range; otherwise, a Segmentation Fault runtime
error can occur (but is unfortunately not guaranteed to occur).

Segmentation Fault errors are among the hardest to trace and
eliminate. Safe programming strategies are important.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Control flow statements

Flow of control I

Control flow statements allow variations in the sequential order of
execution.
In C/C++ no direct jumps (“goto”) are available.

Conditional execution

One type of conditional execution was realized by the switch() command
above.
The following program simulates the flipping of a coin:
Depending on the value of a pseudo random number produced by rand()

it either executes the command printing “head” or the one printing “tails”.
The standard library ctime provides the command time() which returns
the time since January 1, 1970 in seconds. This value is used as seed for
the pseudo random number generator which would otherwise give the
same pseudo random number each time the program is executed.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Control flow statements

Flow of control II

#include <cstdlib>

#include <iostream>

#include <ctime>

using namespace std;

int main() {

srand(time(0));

int a=rand();

if(a < RAND_MAX/2) {

cout << "head\n";

}

else {

cout << "tails\n";

}

}

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Control flow statements

Flow of control III

Loops

The
do {...} while(condition);

statement loops until the condition becomes true.

If the condition is set to the bool value true as in the following example,
the loop is endless unless terminated by a break statement.

In this example, the same result could have been achieved with the
while(condition) {...};

statement.
But otherwise it matters if the condition is tested before or after execution
of the loop body!

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Control flow statements

Flow of control IV

#include <iostream>

#include <ctime>

using namespace std;

int main() {

srand(time(0));

int counter=0;

do {

int a=rand();

if(a < RAND_MAX/2)

break;

counter++;

} while(true);

cout << "Threw " << counter << " times ";

cout << "head before throwing tails." << endl;

}

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Control flow statements

Flow of control V

Indexed loops
The indexed iteration in C++ has the syntax
for(initial-statement; test-expression;

iteration-expression) {...}. The example program takes an integer
number and calculates the factorial:

#include <iostream>

using namespace std;

int main() {

int a, fact = 1;

cout << "Factorial of: "; cin >> a;

for(int i=a; i>1; i--) {

fact *= i;

}

cout << " is " << fact << endl;

}

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Control flow statements

Flow of control VI

The index variable i is only defined within scope of the for loop.

It is first set equal to a, and if it is larger than 1, the loop body is
executed. Then i is diminished by 1.

If it is still bigger than 1, the loop is executed again until the
condition is not fulfilled any more.

If the condition doesn’t hold at the first test, the loop body is never
executed.

Functions
In C++, a function name is preceded by the return type and has the
argument list in round brackets. Each argument has a type. The following
example program calculates the square of a number.
Before main(), the prototype of a function has to be given. This is
mandatory except if the function is fully defined before being used.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Control flow statements

Flow of control VI

#include <iostream>

using namespace std;

double sqr(double& number);

int main() {

double a, b;

cout << "Number to square: "; cin >> a;

b=sqr(a);

cout << "The square is " << b << endl;

}

double sqr(double& number) { return number*number; }

The double& indicates that the argument is passed by reference, which
means that the function only gets a pointer to the argument. Without &
the argument would be passed by value, meaning that it would be copied
into a temporary.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Classes

Classes

Classes are at the heart of C++’s object-orientation (OO).

When you design a program the class design is crucial. Simplicity,
efficiency and maintainability are important factors.

What is the basic idea? If you were using an older, non-OO language to
write a database containing details about people (their weight, height,
name, etc) you might have to have an array for each feature, so the details
for a particular person might be contained in weight[237], height[237],
name[237], etc. Object-orientated languages let you design more natural
programs by creating a person class, with each object containing all the
information about a person, as well as ways to process and display the
information.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Classes

Classes: Public and private members I

The following defines a class named person that has one public member:

class person {

public:

double height; // height in meters

};

That means that you can now create an instance of the class and assign a
value to the member by writing:

person p;

p.height = 1.53;

But as we can directly access the (public) member, we can also write
nonsense into it (for example p.height = 15.3).
Another problem of public access is a lack of control over side effects.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Classes

Classes: Public and private members II

A solution to the unrestricted access problem is to make height a
private member, so that it can’t be changed from the outside (not even
read). But member functions (i.e. functions that are part of the class) can
access private members, so if these functions are public, the outside world
can access the height member in a controlled way via these functions.
The following example uses two such functions to get the height and to
set it with some error-checking.

class person {

private:

double height;

public:

bool set_height(double h) {

if (h<0 or h>3) return false;

else { height=h; return true; }

}

double get_height() { return height;}

};

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Classes

Classes: Public and private members III

Now the uses of the class look like this:

int main() {

person p("Mike",1.60);

if(!p.set_height(3.20)) {

cerr << "Implausible height value!\n"; exit(1);

}

double h=p.get_height();

}

and our program would crash:

$ ./example14

Implausible height value!

This only demonstrates in principle how checks can be built into the data
structure.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Classes

Classes: Constructors and destructors I

A constructor is a function that explicitly initializes an object. A class
should always have one or more constructors in order not to rely on default
constructors with possible unwanted results. There are two possibilities;
using the member initialization list:
class person {

private:

double height;

string name;

public:

person(const string& _name, double _height):

name(_name), height(_height) {}

};
and making assignments in the constructor body:
person(const string& _name, double _height) {

name = _name;

height = _height;

}
Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Classes

Classes: Constructors and destructors II

The first option may often be better as it also works for const members
and can be more efficient.

A destructor specifies what should happen when a class goes out of scope;
one can rely on default destructors except if memory has been allocated
with new; to avoid memory leakage one should delete the allocated
memory:

~vector() { delete[] array; }

As memory leakage is a serious problem, it is necessary to figure out if the
compiler has a way of knowing at which point to deallocate memory.

On the other hand, it may be useful for performance reasons to disable the
destruction of objects by making them static.

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Templates

Templates I

C++’s templates are parameterized types. They support generic
programming by allowing the same methods to deal with various data
types. For example, the following code swaps 2 integers in usual style:

void swap (int& a, int& b) {

int tmp = a;

a = b;

b = tmp;

}

If you wanted to swap other types of variables (including user defined
ones) you could copy this code, replacing int by (say) double. Here,
templates come in:
template <class T>

void swap (T& a, T& b) {

T tmp = a;

a = b;

b = tmp;

}

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt



C++ crash course Templates

Templates II

Here the name T is arbitrary (like a formal parameter in a function
definition). Note that the function is written much as before. When the
compiler is now given the following code it will create a version
(instantiation) of swap for each type required:

int a = 3, b = 5;

double f=7.5, g=9.5;

swap (a, b);

swap (f, g);

This brief introduction to C++ leaves out many interesting aspects of
C++ like casting, polymorphism, inheritance. . .

Some nice online instruction on C++ can be found at
http://www-h.eng.cam.ac.uk/help/tpl/languages/C++/doc/doc.html

Harald O. Jeschke April 10, 2012 ITP, Uni Frankfurt


	Overview
	Topics
	Motivation

	C++ crash course
	Motivation
	First steps in C++
	Input and Output
	Types and arrays
	Control flow statements


