Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Dr. Hunpyo Lee

Frankfurt, June 5, 2012

Exercises for Computational Methods in Solid State Theory SS 2012 $\,$

Exercise Set 6

(Due date: Monday, June 11, 2012)

Exercise 6 (Semiclassical approximation) (10 points)

The Hamiltonian of the single-band Hubbard model with frustration is given as

(1)
$$H = -t \sum_{\langle i,j \rangle \sigma} c^{\dagger}_{i\sigma} c_{j\sigma} - t' \sum_{\langle i,j' \rangle \sigma} c^{\dagger}_{i\sigma} c_{j'\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow},$$

where $\mathbf{c}_{i\sigma}$ ($\mathbf{c}_{i\sigma}^{\dagger}$) is the annihilation (creation) operator of an electron with spin σ at the *i*-th site, and U represents the Coulomb repulsion. The first two sums run over nearest and next nearest neighbours, respectively. The primitive vectors $\mathbf{\vec{a}}_1$ and $\mathbf{\vec{a}}_2$ on the triangular lattice are given as $\mathbf{\vec{a}}_1 = (1,0)$ and $\mathbf{\vec{a}}_2 = (1/2, \sqrt{3}/2)$, respectively.

- a) Calculate the non-interacting Green's function $G(i\omega_n)$ as a function of Matsubara frequency at half-filling for T/t=0.2 and $t=t^\prime=1.0.$
- b) Using single-site dynamical mean field theory (DMFT) with the semiclassical approximation as impurity solver, calculate the impurity Green's function $G(i\omega_n)$ and $G(\omega)$ as a function of Matsubara frequency ω_n and real frequency ω_n respectively, at half-filling for T/t = 0.2, t = t' = 1.0 and U/t = 12.0.
- c) Calculate $G(\omega)$ using the Padé approximation from $G(i\omega_n)$ and compare it with $G(\omega)$ from b) calculated directly with the semiclassical approximation.