Goethe-Universität Frankfurt Fachbereich Physik

Institut für Theoretische Physik Dr. Harald O. Jeschke Dr. Hunpyo Lee

Frankfurt, May 8, 2012

Exercises for Computational Methods in Solid State Theory SS 2012

Exercise Set 3

(Due date: Monday, May 14, 2012)

Exercise 3 (Matsubara Greens functions and Padé method) (10 points)

Consider the one-band tight binding model that you determined for $Sr_2CuO_2Cl_2$ in Exercise 2.

a) Calculate the noninteracting retarded Matsubara Greens functions

(1)
$$G(i\omega_n, \vec{k}) = \frac{1}{i\omega_n - \varepsilon(\vec{k})}$$

and determine the local Greens function

(2)
$$G_0(i\omega_n) = \sum_{\vec{k}} G(i\omega_n, \vec{k})$$

by explicitly performing the \vec{k} summation. $\varepsilon(\vec{k})$ is the tight binding dispersion. Consider a temperature $\beta = 40 \text{ eV}^{-1}$.

b) Use the Hilbert transformation which is given as

(3)
$$G_0(i\omega_n) = \int_{-\infty}^{\infty} d\varepsilon \frac{\rho(\varepsilon)}{i\omega_n - \varepsilon},$$

where the density of states $\rho(\epsilon)$ for the Cu $3d_{x^2-y^2}$ band crossing the Fermi level was determined by tight binding fit in Exercise 2. Calculate $G_0(i\omega_n)$ via Hilbert transformation and compare to $G_0(i\omega_n)$ obtained from a).

- c) Implement the method of Padé approximants and continue $G_0(i\omega_n)$ of Eq. (2) analytically to the real frequency axis. Plot the density of states $\rho(\omega) = -\frac{1}{\pi} \operatorname{Im} G_0(\omega)$ and compare to the tight binding result.
- d) Use your tight binding density of states $\rho(\omega)$ from Exercise 2 to determine $G_0(\omega)$ on the real frequency axis via Kramers-Kronig relations. Compare the result to $G_0(\omega)$ from c).