4. Dynamical mean field theory

Fock space

We consider the Hilbert space Hy for a system of N identical particles. The

wave function PN (T1, T2, . . ., Tn) representing the probability amplitude for
finding the particles at N positions Ty ..., Tn must satisfy
WnIbN) = Jd?’rl AP (T -, TP < oo (4.1)

Hy is the Nth tensor product of the simple particle spaces H
HY =HeH® - - @K (4.2)

If {|)} is an orthonormal basis of 3, the canonical orthonormal basis of
Hn is constructed from the tensor products:

o . .oon) = o) o) . Ja) (4.3)

The bra/ket have round brackets as long as the symmetry property is not
taken into account.
The basis states have wave functions

Wy p..o0n (?1,?2,---,?1\1) = (?17--~7?N|O¢1>--~7(XN)
= (M@ Tl @+ @ (*n]) (Jo) @ [at2) @ -+ @ |oen))
= Qo (T1) Py (T2) - - Py (TN) (4.4)

The overlap of two vectors is

(s ... omlagod ... o) = (] @ (o] @ - @ (o) (loe) @ loeg) -+ - @ |oey))
= (arloy){oalory) - . . (onlony)
(4.5)

and the completeness relations of the basis follows from the tensor product
of the completeness relations of {|x)}:

Z |0610£2...(XN><061062...O(N‘ =1 (4.6)

X1...0(N
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1 is the unit operator in Hy. Hy is generated by linear combinations of
products of single particle wave functions.

Now we need to account for the symmetry property of the wave functi-
on. In nature, for identical particles, only totally symmetric and totally
antisymmetric states are observed, corresponding to bosons and fermions,
respectively. The wave function for fermions/bosons obeys

I-I)(?plu?})zw"u?p]\]) — EPl-I)(?ly?Qu"w?N) (47)

where P = (p1, P2, ..., PN) represents any permutation of the set (1,2,..., N),

and P is the parity (sign) of the permutation P (number of transpositions
needed to achieve the permutation). ¢ = —1 for fermions, ¢ = +1 for
bosons.

This restricts the Hilbert space of the N particle system; a wave function

P(T1,...,7Tn) belongs to the Hilbert space U'C](\T ) of N bosons (fermions) if
it is symmetric (antisymmetric) under a permutation of the particles.
We define a symmetrization operator P, by the action on the wave function:

~ ~ 1 . ~
?all)(rla"-aTN) :Wzgpw(rPDTPQ?'“?TPN) (48)

P

E.g. for two fermions

P_ip(r1,72) = %(II)(?L?ﬂ — (72, 71)) (4.9)

with the group composition of two permutations P and P’, the symmetri-
zation operator P can be shown to be a projector (P? = P.). Thus, these
projectors project Hy onto fermionic and bosonic Hilbert spaces:

H = P.Hy (4.10)

Now, a system of bosons or fermions with one particle in state o, one in
state x9, ... one in state xy is represented as

|061...O(N}E VN!TJOQ...(XN)
1 P
= —— > &) ® lop,) @ .. logpy,) (4.11)
VNI &

Symmetrized states are marked with curly bra/ket. The Pauli principle
stating that two fermions cannot occupied the same state is automatically
satisfied for antisymmetric states; if we take states |o¢;) = |xg) we have

|OC1062063 ce O(N} = VN!'JD_ﬂOClOCQ(Xg ce OCN) = —V N!T_1|OCQOC1OC3 e O(N)
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(4.12)
Now an occupation number representation can be introduced.

Grassmann algebra

We need anticommuting numbers for constructing coherent states for fer-
mions which are eigenstates of annihilation operators because nticommu-
tation relations of annihilation operators a; lead to anticommutation rela-
tions of the eigenvalues ;. Algebras of anticommuting numbers are called
Grassmann algebras. For the present purpose, it is sufficient to consi-
der Grassmann algebra with its definition of differentiation and integration
as clever constructs that take care of the minus signs that arise from the
antisymmetry of fermions.

An algebra is a linear space in which, besides the usual operations of addi-
tion and multiplication by numbers, a product of elements is defined with
the usual distributive law:

x(al+b&) = ax(+bx§ (al+b&)x = alx + béx (4.13)

with numbers a, b € K (here K = C) and elements of the algebra x, (
and . The algebra is associative if for any three elements

x(C&) = (xC)& (4.14)

A Grassmann algebra is defined by a set of generators {x;}, 1 = 1...m.
These generators anticommute

XiXj +XiXi =0 (4.15)
so that in particular (for 1 =j)
E? — 0 (4.16)

The basis of the Grassmann algebra is made up of all distinct products of

the generators. Thus, a number in the Grassmann algebra is a linear combi-

nation, with complex coefficients, of the numbers {1, X oy, Xo; Xeas - - - » Xow Xoto*
-+ Xa, ) With indices o ordered, by convention, as o1 < &g < - -+ < Xp.

The dimension of the algebra with n generators is 2™ since distinct basis

elements are produced by the two possibilities of including a generator 0

or 1 times for each of the n generators.
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A conjugation operation can be defined in an algebra with an even number
n = 2p of generators. We select a set of p generators x; and to each we
associate a generator called x;. Then the conjugation is defined by

x)"=xi ) =xi (4.17)
Then, for complex A
(Axi)" = A'X{ (4.18)

and for products of generators

(X Xoo - - Xon )" = Xo Xoo s - - - Xy (4.19)

We now consider a Grassmann algebra with two generators, ¥ and x*. The
algebra is generated by {1,x, %™, x*X}. Because of X% = 0, any analytic
function of f defined on this algebra is a linear function:

f(x) = fo+ f1x (4.20)
An operator A has the form
AXx) = ap + arx + ai1X” + aiex’X (4.21)

Now a derivative can be defined for Grassmann variable functions; it is like
the complex derivative, but for the operator % to act on x, X has to be
anticommuted until it is adjacent to x. For example:

2% = 2 0¢) = —x
oy X X) = 5 (X)) = =X
Then
a * * a * —
AKX X) = a1 —apx “A(XT, X)) = ar + ax
0x 0x
d d d d
AKX = —an = — —— AKX 4.22
o Ox (X", %) o o X (X", %) (4.22)

Thus, % and a?(* anticommute.
In defining an integral, there is no analog of the Riemann sum; rather, it

is defined as a linear mapping which has the fundamental property

JOO df(x)

oo dx

=0 in case f(x — o0) = f(x - —00) =0 (4.23)

28



of ordinary integrals over functions vanishing at infinity that the integral
of an exact differential form is zero. This implies

del =0 (4.24)

The only nonvanishing integral is that of x since x is not a derivative. Thus
we define

dex =1 (4.25)

and again in order to apply this, one has to anticommute x to bring it
next to dx. Grassmann integration turns out to be equivalent to Grass-
mann differentiation. As we arbitrarily defined half the generators X; to
be conjugate variables but otherwise they are equivalent to xi, we define
integration for conjugate variables in the same way:

de* 1=0 de* X =1 (4.26)

Examples for integration rules are:

dx f(x) = de(fo +f1x) =11
dx Alx",x) = de (ap + arx + arx" + ar2x™x) = a1 — apx”

dx* Alx",x) = a1 + a2

dx*deA(x*,x) = —ap = —dede*A(x*,x) (4.27)

Functional integral representation

We now introduce coherent states as a basis of Fock space F. They are
eigenstates of fermionic annihilation operators (creation operators would
not work as they don’t have eigenstates)!:

ailx) = Xilx) (4.28)

lsee J. W. Negele and H. Orland, Quantum Many-Particle Systems, Perseus Publishing, Cambridge
1998, p. 20.
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This leads to the definition of a generalized Fermion Fock space as now
complex as well as Grassmann coefficients are allowed for a state?. A vector
in this space can be expanded as

) = ZXi|¢i> (4.29)

with x; part of the Grassmann algebra G and |¢p;) element of the Fock
space F. For calculating with expressions mixing Grassmann variables and
creation or annihilation operators, commutation rules are necessary:

[~, d]+ — O (4.30)
and
(xa)' = a'x* (4.31)

with X any Grassmann variable in {Xi, x{} and a is any operator in {aj, aiT}.
A Fermi coherent state is defined as
X) = exp{ Z Xia } = [ (1 =xia))10) (4.32)
i

Noting that pairs of Grassmann variables and creation or annihilation ope-
rators commute:

il xa]] = xialxal —xalxial = —xixgalal + xxialal
= xjxiajal —xxialal =0 (4.33)

we can show that the two definitions of Eq. (4.32) are really the same:

—eXp{ le } HeXp{—xiaI}lwZH(l—xiaD|0>

i i

(4.34)

We show that [x) is indeed an eigenstate for a; with eigenvalue X;:

ailx) = a; | (1 —x;a])10)

j

—1 ,_(1 - Xia})ai(l — Xiai)|0> = H(l — XjaDXiaiaUO) using Eq. (4.30)
7 A

=1 “(1 —Xja;[)Xi|0> = H(l _Xja;r>Xi(1 —XiaD|0> because Xiz =0
AL A

= XilX)

2see ibid., p. 29.
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(4.35)
The adjoint of a coherent state is

Xl = (olexp{ = Y~ () } = (Olexp{ Y xja } = 01 [T(1+xa)
j j

j

(4.36)
This state is a left eigenfunction of (1;r
(xlal = (xIx; (4.37)
The effect of a creation operator ai on a state [x) is
ailx) = ay ] [(1=x4a))10) = [ [(1 =x50))a{ (1 = x:a{) 0)
j j#
= H(l —XjajT)aﬂO) because aia;r =0
j#i
_ 0 (1—xial) H(l —x;al)]0) = — 0 [x) (4.38)
oxi e g 0xi
j#
and in the same way
(x| 0 (x| (4.39)
a; = :
X1ai X X

The coherent states now form an overcomplete basis of the generalized
Fock space, and two states |x) and |x') have an overlap:

b = (O T [(1+x5a) [ (1 —x5a])10) = (0 H(l +xia) (1 —x:al)lo)

i j
= O TJ(1 —xamxa))loy = T J(1 +xix) = eXp{Z xffxi}
l l l (4.40)
One can then prove that the unit of the physical Fock space F can be
written as®
JH dx} dxie= XX x) (x| = 1 (4.41)
i

3for the proof see ibid., p. 31.
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4.1 DMFT self consistency condition for the Hubbard model

We consider the Hubbard Hamiltonian

H —_ — Z tl]C;t)-C]O' Z Cl()'clo- + Z ClGCIGCIG/Cuy/ (442)
ijo ioo’
o#0’
where the spin and orbital index o runs from 1 to N. The partition function
corresponding to this Hamiltonian is

— J H DeigDeige ™ (4.43)

with the action

(4.44)

where the fermion operators C;;, Cig of the Hamiltonian have been replaced
by Grassmann variables Ciy(T), Cio(T).

The cavity method now requires that we focus on one site i = o and
separate the Hamiltonian (4.42) into three parts, one relating to site o
only, one connecting this site to the lattice and one for the lattice with site
0 removed:

H=H, + H, +H© (4.45)
u

HO — _}—‘LZ C;)’_()‘COO- + 5 Z CZ)._O‘COO'C;)'—O'/COO-/ (446)
o oo’
o#o’

H, = — Z [twc Coo + tmc cw} (4.47)

+ + u + +
i#£0j#0 0 i#oo i#£0 00’
o#o’
(4.48)
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The three parts of the Hamiltonian correspond to the action S, of site o,
the action AS for the interaction between site o and the lattice, and the
action S©) of the lattice without site o:

o —J dt [Z COO‘ (_ - FL> COO‘(T) + % COG(T)COO'(T)COO'/(T)COO'/(T)
0'07—2-0/‘/
(4.49)
AS = — JB dt [Z tioCiG(T)Coa(T) + tOiCOO'(T)CiO'(T)] (4'50)
0 io
:J [Z Cio(T <_ — FL) Cio(T) — Z tij(_:iO'(T)CjO'(T)
i#o o i#oj#o o
(4.51)
+ - Z Cw Cw Cw’( )Cw ( )]
1750 oo’
o#0’

The aim is now to integrate out all lattice degrees of freedom except those
of site 0 in order to find the effective dynamics at site 0. In that process,
the action S, remains unchanged, the terms of AS are expanded in terms of
the hopping t which becomes small with increasing dimension and averaged
with respect to the action S{©). Defining AS(T) via AS = fg dT AS(T) the
partition function is

o B
/= Jﬂéoaﬂcoge_s" JH @Cw@cwe_s( ‘e[ dTaS(D) (4.52)
i#o

Now we can expand the last exponential function as

. B LB (B

e Jo dTAS(T):l—J dTAS(T)—{—EJ dT1J dte AS(11)AS(T9) —
0 o 0

(4.53)

Taking into account that in general an operator average with respect to an
action S can be expressed as

JTTi DeaDege Alcy, ol

(A)s = [ TLi DcaDeqes

1 J H DegDege SAlCqy, Col

33



(4.54)

we can consider the second functional integral in (4.52) to average the
terms of the expansion (4.53) with respect to the lattice action S':

0

B
/ = JH Déoo—gcoge_SOZS(o) {1 — J dt <AS(T)>S(0)

1 (P B
—I_EJ dTlJ dTQ <AS(T1)AS(T2)>S(O) —}
- J0 0
(4.55)
Here, the partition function of the lattice without site o is abbreviated as

Zso) = J I DeDeae S . (4.56)

Now the terms in (4.55) with odd powers of AS will average to zero. For
example,

<AS (T)>S(0) — Z tiO<CiO'(T)>S(0)COO'(T) +toiéoa(T) <C10(T)>S(0) — O, (4-57)

because the average (...)sw©) acts on all sites except 0. The next average
in (4.55) yields

(AS(T1)AS(T2))s00) = <TT [Z tioCio(T1)Coo(T1) + toiéoc(Tl)Cio(Tl)] X

io

X [Z tjoéjc’(T2)Coo’(T2) + tOjCOG/(Tz)Cjal(Tz)] >S(°)

jo'
= Y tiotejCos(T1) (TeCio(T1)Cjor (T2))s00) Coor(T2)
ijoo’
+ Z toitioCoo(T1)(TeCio(T1)Cio (T2))si0) Coor(T2)
joo’
=2 Z tiotojéoc(Tl)<TTC10(T1)C)'G’(T2)>S(OJ Coo’(TQ)
ijoo’
=2 Z tiOtOjCOG(Tl)<TTCiG(Tl)CjG(T2)>S(O) COO‘(TQ)
ijo
= —2 Z tiotojéoo(Tl)Gi(jogy(Tl — TQ)COG(TQ)
jo
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(4.58)

The imaginary time ordering operatore . enters because the path integral
leads to imaginary time ordering. Only terms with 0 = ¢’ contribute as
we are considering a paramagnetic state and thus (TrCis(T1)Cjer (T2))500) =
do0/{TCio(T1)Cjo(T2))s10). We have identified the average with the cavity
Greens function Gij();('tl —Ty) = —<TTC10—(T1)C]O_(T2)>S (0), 4. e. the Greens
function of the Hubbard model without the site 0. Now we have for the
partition function

= J H DCOO-‘DCOO—e_SOZS(o) X
(o)

B )
X {1 —J dT1J dto Ztiotojéoo(Tl)Coo(’Q)G%O();(Tl —T2) + .. }

0 0 ijo

(4.59)

We would like to write the bracket {...} in (4.59) again as an exponential
function in order to identify an effective action Seg:

_ J T DeosDeooe e (4.60)

Noting that the next term in the expansion of (4.59) would read

B B B B
J dTl J dT2 J dT3 J dT4 Z éoc(Tl)600(T3)C00(T2)C00(T4) X
0 0 0 0 1i2j1jo 0
X tll Otlg Ot0]1tO]QG (Tl T3, T2 T4) .

(4.61)

111211120

We can write for the partion function (4.59)

= J H D(_:OO'DCOO'e_SOZS(O) X
i

§
X eXp{ Z ZJ drty.. J dTon Coo(T1) - .- Cool(Tan—1)Coo(T2) . .. Coo(Tan) X

n=1 o

§ (o)

X tll o - 0]1 to]nGllin]l]no—(Tl PN T2n_1, T2 PN T2n)
117 alTL
jla"'vjn
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(4.62)

All terms but the first in this sum over n turn out to be at least of order
1/d so that they vanish in the limit of infinite dimension d = oco. Thus, in
this limit we find for the effective action

eff - S + ZJ dTlJ' dT2 éOG(Tl)COO' T2 Z tiotojGi(jo();(Tl - TZ)

:JO dT[; Coo(T) (a—T— )cog +— Zcoa T) Coo(T) oo’ (T) oo (T)

0750
+ Z J dTl J dT2 COO‘(Tl)COO'(TQ) Z tiotojGi(jo()y(Tl - TQ)
.
(4.63)

and introducing the Weiss field

0 0
Gt (t1 —T2) = _(6_fq — M) Oty — Z tiotojGi(j 3;(’51 —T2) (4.64)
Y

we finally get

- Jo 0
+J dT— Y Coo(T)Cos(T)Co0 (T) oo (T) (4.65)
oo’ o#0’
The equation
Gis = Gijo — GiooGon s Gojo (4.66)

is needed to relate the cavity Greens function to the Greens function of
the lattice Gijo. Going from imaginary time to imaginary frequency and
combining with (4.66), the Weiss function (4.64) reads

Gyl (iwn) = iwn + 1 — ) tiotejGi(iwn)
)
. . . 1 .
= 1Wn + UL — Z tiotoj {Gij cr(uvn) — Gio G(lwn)Goo o(lwn)Goj G(lwﬂ)
y
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(4.67)

If we now go from real space to k space we can simplify this equation.
Introducing the Fourier transform Gy via

1) o 1(1)n Z etkRij Gk 1wn) (468)

we find

E E E ikRio E
thGlOG 1~(Un th el Gko 1(Un SkaG 1~(Un
§ § § ikR;
tlotOJGuG l(fUn t10J50) € ]G ul’n)
y
— § § tloelleO § to]elkRO] Gko‘ 1wn § Ekao‘ 1wn

(4.69)

In the general form of the Greens function G, (lj(iwn) =i, +uU— e —
2 s(iwy) we introduce the abbreviation & = 1w, + 1 — Xs(iwy,) to get
Ggé(iwn) = & — ¢y and determine the sums

: — &+ &
;Ekac(lwn) = Z E,ikf,k = ZSkE,——Ek _—1‘|‘Z

K K &
=—1+ EZ Gko(iwn) =—1+ EGoo O'(lwﬂ)
k
2 . o €]2< o Sk(Ek— + EkE,
;eka(mwn) ‘%a—ek ‘% — _Z k+aza_£k
E»( 1+ E»Goocr lwn)) ==&+ 5;2 ooc(lwn)
(4.70)

With this, the Weiss function (4.67) becomes

9;1 (iwn) =iwn + p— Z E%ch(iwn (Z ekGio(iwn) )2Go_o G(iwn)
k

= iwn + u+ & — £2Goo G(iwn)
+ (=14 EGooo(iwn)) (—Gog o (iwn) + £)
= iwn + p’ T E, + Gg(}o'(lwn) = Z hwn) + Goo o‘(lwn)
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(4.71)

The effective action (4.65) can now be interpreted in terms of the Anderson
impurity model, i. e. the Anderson impurity model gives rise to an action
which becomes identical to (4.65) if an additional self consistency condition
is fulfilled. The Hamiltonian for the Anderson impurity model is

. u Z
ko ko o oo’
o#o’

(4.72)

where o runs from 1 to the degeneracy N. The action corresponding to
this Hamiltonian will consist of a purely local part S, concerning only the
f electrons

O_J dT[Zf (——u) )+ — Zf e )fG/(T)]
= (4.73)

and a part involving conduction band electrons that can be integrated out:

S = O+J dTZ[C‘“’ (5 + e enolt )+vkckc(w)fg(n-)+vzfg(w)cmm]
(4.74)

Now the partition function for the Hamiltonian (4.72) is
Z= J DfoDf g J H DeigDege > = J DfeDfye > J [ [ DeioDeiox
x exp{ j ar) [ckg ) (o + &) exol®) Vo D) (1) + V;:f}(w)ckg(w)] }
= J@F Df, e >0 r det(i + £k> X
o o k‘_ a"['

B rp B 0 -1
X eXp{ZJ dt; | drm fg(Tl)V];ka(a—Tl + £k> O, T21°G(TQ)}

ko “0 JO

(4.75)
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In the last step, the terms involving f electrons V{fs(T) and Vif,(T) were
taken as source terms, which makes the term in the exponent a Gaussian
integral that can be evaluated directly. The determinant constitutes a con-
stant factor in the partition function that doesn’t concern us here. We are
left with an action for the f electrons that reads

S¢ = Jﬁ dTlJ dT2Zf T [( u)&m =) Vil (611 + €k>_16T1T2] fo(T2)

k

" JO drg 3 fol oo (D))

(4.76)

If we now compare this to the effective action of the Hubbard model (4.65),
we see that they are identical if we require that the Weiss function §(tq —
T9) fulfils the condition

Gl (1 — ) = — (i _ H) I Z Vi |2 <_ n sk) _1611 o (4.77)

aTl

Going from imaginary time to imaginary frequency, this equation reads

1y . o |\/k‘2
9 (lwn) =1lwn + Z — (4.78)

W, — €
K n k

Here we can identify the usual definition of the hybridization function
A(iwy) in the Anderson impurity model

Aliwn) =) v (4.79)

Twn — €
Kk n k

If we now equate Weiss functions (4.71) and (4.78) we find the DMFT
selfconsistency condition in terms of a prescription for A(iwy)

Aliwy) = iw, + 1 — Ze(iwn) — God (iwy) (4.80)

On the Bethe lattice and with a half band width of 2t, we have a nonin-
teracting density of states

po(e) = L\/4t2 — ¢? (4.81)
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and thus we can write for the local Greens function

Gooolw) = 3 Gulw) = 3 —
k

with (=w+u—Zs(w)

0Ttk
Po(€) 1 Jzt 412 — g2 1
= [ de = de = — V(2 — 412
J (—e 2mt2 ) o (—¢ 212 (C—san(Q)VC )
(4.82)
From this we gain the expression
t*Gooo(w) — C+ Ggolw) =0, (4.83)

which combined with Eq. (4.80) leads to a simplified form of the selfcon-
sistency condition

A(iwy) = t2Ggp o(iwn) . (4.84)

4.2 Semiclassical approximation

The Hamiltonian is given as
H=-t Z(C;ng +he)+U Z Tt Ny, (4.85)
(ij)o i
where t is the hopping matrix between sites and U is the Coulomb repul-
sion. The partition function Z for many-body system is

7 = Tre PH = JD[CTC] e_Se”, (4.86)
where the effective action Se¢f is
B CH ) ) B
Serr = —J dTJ dt'c’(t)a(t, T )c(T) +J dt Uni (T)ny (T). (4.87)
0 0 0

Here, a(T,T) = Gal(’t —7)and B = % We can decompose nyn; into

1

nn, = Z((nT + n¢)2 - (TLT — TIUQ) = (N2 - M2), (4.88)

—

where N(7T) is the particle number and M(T
the effective action is rewritten as

is the magnetization. Now,

P P P
seﬁ:—J er dT’cT(T)a(T,T’)c(T’HEJ dt(N?(1) — M*(1)).
0 0 4 Jo
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(4.89)

If we substitute N(t) by (N), where (N) = 1 at half-filling, the partition
function is

B B B
J dTJ dT/CT(T)a(T,T/)C(T/)—FEJ dtM?(T) _Bu

Z:JD[CTc]eO 0 4 Jo e 4

(4.90)

where term % shifts the energy at —% and plays the same role like a

chemical potential. It does not affect the Green’s function, so we neglect
u
the term e 1.

Now, let us use a Hubbard-Stratonovich (HS) transformation. The HS
transformation introduces a new auxiliary field. The HS transformation
is given as

o
—00

where A is a number and X is an auxiliary field. Using the HS transforma-
tion, we obtain the partition function with auxiliary field ¢:

’ dT(sz(T) d)('c)M('c))

B B
dt| ar'ci(t)alt,t)e(r’ _J _
/ = JD[CTc]D[(I)]eJO TJO te (T)a(T ’ )C(T) 0 4U 2 7

(4.92)

where A = ‘/EM and x = \/1317 from Eq. (7). In general, the semiclassical
field ¢ is a function of the imaginary time T, but in this approximation we
assume it to be T-independent (why we call semiclassical approximation).
Let us employ M(T) = fg dt'cf(1)0,8(T —1)c(T') in Eq. (8), where o,

is the Pauli matrix. In that case, the partition function is given as
(3d)2 6 B !/ / 1 / !/
00 ———I—J dTJ dt CT(T)(G(T,T)—I——(I)O‘Zé(T—T))C(T)

ZZJD[CTC]J dpe U Jo o 2

—0o0

(4.93)

After a Fourier transformation from imaginary time T to Matsubara fre-
quency Wy, we can rewrite the partition function in the Matsubara fre-
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quency space:

(4.94)

Using e wn ¢'(wn) — I1e. (1—|—CT(wn)c(wn)), we can express the partition
function:

o Bd?
z:JD[CTC]J dq)e au H 1+c'( wn)c(wn)) (4.95)

©.9]

With Grassmann integration [ dCTdC =0and [ dcfdcaclc = —a | cldcl =
—a, the partition function is

The general partition function for single-site calculations is

zzro dpePVIP) (4.97)
with V() = & —T Y, In det[-B(a (wn)+/\(¢ s))]. Note that a(wy)

and A(¢,s) are 2 x 2 matrlces where s = 2, —=. Some permutations of
the rows and the columns matrix lead to a dlagonal matrix, which looks
diag(ay, a;), where as(a;) is a 1 X 1 matrix. In that case, the potential
can be rewritten as

1
V() =5¢* =T 3 det[—Blalwn) +As($))],  (4.98)
Wn,0="1,{
where 0, = 1(—1) if 0 =1 ({). Finally, the impurity Green’s function is

. 1 [
G (iwn) = 5 | dde BV (aglwn) + Acl), (4.99)
from G (iwy,) = a%naz'

The dynamical mean field theory (DMFT) self-consistent loop:

42



(1) Set the self-energy Z(iwy,) = 0 and X(w) = 0, where w,, and w are
the Matsubara frequency and real frequency, respectively.

(2) Using DMFT self-consistent equation (Hilbert transformation) and
Dyson’s equation, the Weiss field G%(iwy,) and G°(w). The DMFT
self-consistent equation is given as

BZ
. 1
G™(iw,) = | dk- — 4.100
(icwn) J iwn +p—ex — Z(iwy) ( )
and
e+ —— (4.101)
GO'iw,) Gl (jw,)’ '

(3) Insert GY(iwy) into the semiclassical approximation impurity solver
and calculate the new self-energy by Dyson’s equation.

new (: _ 1 . 1
T ({y) = o]~ G iw (4.102)

(4) The new self-energy are inserted into (2) process. This DMFT iterations
are repetitive and after several iterations, we can obtain the converged
self-energy X(iwn).

It is recommended to write a code for the semiclassical approximation by
solving only Eqs. (4.97), (4.98) and (4.99).
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