
4. Dynamical mean field theory

Fock space

We consider the Hilbert space HN for a system ofN identical particles. The

wave functionψN(
⇀
r1,

⇀
r2, . . . ,

⇀
rN) representing the probability amplitude for

finding the particles at N positions
⇀
r1 . . . ,

⇀
rN must satisfy

〈ψN|ψN〉 =
∫
d3r1 . . .d3rN|ψN(

⇀
r1, . . . ,

⇀
rN)|

2 < +∞ (4.1)

HN is the Nth tensor product of the simple particle spaces H

H
(ε)
N = H⊗H⊗ · · · ⊗H (4.2)

If {|α〉} is an orthonormal basis of H, the canonical orthonormal basis of

HN is constructed from the tensor products:

|α1 . . .αN) ≡ |α1〉|α2〉 . . . |αN〉 (4.3)

The bra/ket have round brackets as long as the symmetry property is not

taken into account.

The basis states have wave functions

ψα1α2...αN(
⇀
r1,

⇀
r2, . . . ,

⇀
rN) = (

⇀
r1, . . . ,

⇀
rN|α1, . . . ,αN)

=
(
〈⇀r1|⊗ 〈⇀r2|⊗ · · · ⊗ 〈⇀rN|

)(
|α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN〉

)

= ϕα1(
⇀
r1)ϕα2(

⇀
r2) . . .ϕαN(

⇀
rN) (4.4)

The overlap of two vectors is

(α1α2 . . .αN|α
′
1α
′
2 . . .α ′N) =

(
〈α1|⊗ 〈α2|⊗ · · · ⊗ 〈αN|

)(
|α ′1〉 ⊗ |α ′2〉 · · · ⊗ |α ′N〉

)

= 〈α1|α
′
1〉〈α2|α

′
2〉 . . . 〈αN|α ′N〉

(4.5)

and the completeness relations of the basis follows from the tensor product

of the completeness relations of {|α〉}:
∑

α1...αN

|α1α2 . . .αN〉〈α1α2 . . .αN| = 1 (4.6)
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1 is the unit operator in HN. HN is generated by linear combinations of

products of single particle wave functions.

Now we need to account for the symmetry property of the wave functi-

on. In nature, for identical particles, only totally symmetric and totally

antisymmetric states are observed, corresponding to bosons and fermions,

respectively. The wave function for fermions/bosons obeys

ψ(
⇀
rp1,

⇀
rp2, . . . ,

⇀
rpN) = ε

Pψ(
⇀
r1,

⇀
r2, . . . ,

⇀
rN) (4.7)

where P = (p1,p2, . . . ,pN) represents any permutation of the set (1, 2, . . . ,N),
and P is the parity (sign) of the permutation P (number of transpositions

needed to achieve the permutation). ε = −1 for fermions, ε = +1 for

bosons.

This restricts the Hilbert space of the N particle system; a wave function

ψ(
⇀
r1, . . . ,

⇀
rN) belongs to the Hilbert space H

(ε)
N of N bosons (fermions) if

it is symmetric (antisymmetric) under a permutation of the particles.

We define a symmetrization operator Pε by the action on the wave function:

Pεψ(
⇀
r1, . . . ,

⇀
rN) =

1

N!

∑

P

εPψ(
⇀
rp1,

⇀
rp2, . . . ,

⇀
rpN) (4.8)

E.g. for two fermions

P−1ψ(
⇀
r1,

⇀
r2) =

1

2

(
ψ(

⇀
r1,

⇀
r2) −ψ(

⇀
r2,

⇀
r1)
)

(4.9)

with the group composition of two permutations P and P ′, the symmetri-

zation operator Pε can be shown to be a projector (P2
ε = Pε). Thus, these

projectors project HN onto fermionic and bosonic Hilbert spaces:

H
(ε)
N = PεHN (4.10)

Now, a system of bosons or fermions with one particle in state α1, one in

state α2, . . . one in state αN is represented as

|α1 . . .αN} ≡
√
N!Pε|α1 . . .αN)

=
1√
N!

∑

P

εP|αp1〉 ⊗ |αp2〉 ⊗ . . . |αpN〉 (4.11)

Symmetrized states are marked with curly bra/ket. The Pauli principle

stating that two fermions cannot occupied the same state is automatically

satisfied for antisymmetric states; if we take states |α1〉 = |α2〉 we have

|α1α2α3 . . .αN} =
√
N!P−1|α1α2α3 . . .αN) = −

√
N!P−1|α2α1α3 . . .αN) = 0
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(4.12)

Now an occupation number representation can be introduced.

Grassmann algebra

We need anticommuting numbers for constructing coherent states for fer-

mions which are eigenstates of annihilation operators because nticommu-

tation relations of annihilation operators ai lead to anticommutation rela-

tions of the eigenvalues χi. Algebras of anticommuting numbers are called

Grassmann algebras. For the present purpose, it is sufficient to consi-

der Grassmann algebra with its definition of differentiation and integration

as clever constructs that take care of the minus signs that arise from the

antisymmetry of fermions.

An algebra is a linear space in which, besides the usual operations of addi-

tion and multiplication by numbers, a product of elements is defined with

the usual distributive law:

χ(aζ+ bξ) = aχζ+ bχξ (aζ+ bξ)χ = aζχ+ bξχ (4.13)

with numbers a, b ∈ K (here K = C) and elements of the algebra χ, ζ
and ξ. The algebra is associative if for any three elements

χ(ζξ) = (χζ)ξ (4.14)

A Grassmann algebra is defined by a set of generators {χi}, i = 1 . . .n.

These generators anticommute

χiχj + χjχi = 0 (4.15)

so that in particular (for i = j)

ξ2
i = 0 (4.16)

The basis of the Grassmann algebra is made up of all distinct products of

the generators. Thus, a number in the Grassmann algebra is a linear combi-

nation, with complex coefficients, of the numbers {1,χα1,χα1χα2, . . . ,χα1χα2·
· · χαn} with indices αi ordered, by convention, as α1 < α2 < · · · < αn.

The dimension of the algebra with n generators is 2n since distinct basis

elements are produced by the two possibilities of including a generator 0

or 1 times for each of the n generators.
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A conjugation operation can be defined in an algebra with an even number

n = 2p of generators. We select a set of p generators χi and to each we

associate a generator called χ∗i . Then the conjugation is defined by

(χi)
∗ = χ∗i (χ∗i )

∗ = χi (4.17)

Then, for complex λ

(λχi)
∗ = λ∗χ∗i (4.18)

and for products of generators

(χα1χα2 . . .χαn)
∗ = χ∗αnχ

∗
αn−1

. . .χ∗α1
(4.19)

We now consider a Grassmann algebra with two generators, χ and χ∗. The

algebra is generated by {1,χ,χ∗,χ∗χ}. Because of χ2
i = 0, any analytic

function of f defined on this algebra is a linear function:

f(χ) = f0 + f1χ (4.20)

An operator A has the form

A(χ∗,χ) = a0 + a1χ+ ā1χ
∗ + a12χ

∗χ (4.21)

Now a derivative can be defined for Grassmann variable functions; it is like

the complex derivative, but for the operator ∂
∂χ

to act on χ, χ has to be

anticommuted until it is adjacent to χ. For example:

∂

∂χ
(χ∗χ) =

∂

∂χ
(−χχ∗) = − χ∗

Then

∂

∂χ
A(χ∗,χ) = a1 − a12χ

∗ ∂

∂χ∗
A(χ∗,χ) = ā1 + a12χ

∂

∂χ∗
∂

∂χ
A(χ∗,χ) = − a12 = −

∂

∂χ

∂

∂χ∗
A(χ∗,χ) (4.22)

Thus, ∂
∂χ

and ∂
∂χ∗ anticommute.

In defining an integral, there is no analog of the Riemann sum; rather, it

is defined as a linear mapping which has the fundamental property
∫∞

−∞

df(x)

dx
= 0 in case f(x→∞) = f(x→ −∞) = 0 (4.23)
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of ordinary integrals over functions vanishing at infinity that the integral

of an exact differential form is zero. This implies

∫
dχ 1 = 0 (4.24)

The only nonvanishing integral is that of χ since χ is not a derivative. Thus

we define
∫
dχχ = 1 (4.25)

and again in order to apply this, one has to anticommute χ to bring it

next to dχ. Grassmann integration turns out to be equivalent to Grass-

mann differentiation. As we arbitrarily defined half the generators χ∗i to

be conjugate variables but otherwise they are equivalent to χi, we define

integration for conjugate variables in the same way:

∫
dχ∗ 1 = 0

∫
dχ∗ χ∗ = 1 (4.26)

Examples for integration rules are:

∫
dχ f(χ) =

∫
dχ(f0 + f1χ) = f1

∫
dχA(χ∗,χ) =

∫
dχ (a0 + a1χ+ ā1χ

∗ + a12χ
∗χ) = a1 − a12χ

∗

∫
dχ∗A(χ∗,χ) = ā1 + a12χ
∫
dχ∗
∫
dχA(χ∗,χ) = − a12 = −

∫
dχ

∫
dχ∗A(χ∗,χ) (4.27)

Functional integral representation

We now introduce coherent states as a basis of Fock space F. They are

eigenstates of fermionic annihilation operators (creation operators would

not work as they don’t have eigenstates)1:

ai|χ〉 = χi|χ〉 (4.28)

1see J. W. Negele and H. Orland, Quantum Many-Particle Systems, Perseus Publishing, Cambridge
1998, p. 20.
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This leads to the definition of a generalized Fermion Fock space as now

complex as well as Grassmann coefficients are allowed for a state2. A vector

in this space can be expanded as

|ψ〉 =
∑

i

χi|φi〉 (4.29)

with χi part of the Grassmann algebra G and |φi〉 element of the Fock

space F. For calculating with expressions mixing Grassmann variables and

creation or annihilation operators, commutation rules are necessary:

[χ̃, ã]+ = 0 (4.30)

and

(χ̃ã)† = ã†χ̃∗ (4.31)

with χ̃ any Grassmann variable in {χi,χ
∗
i } and ã is any operator in {ai,a

†
i}.

A Fermi coherent state is defined as

|χ〉 = exp
{
−
∑

i

χia
†
i

}
|0〉 =

∏

i

(
1 − χia

†
i

)
|0〉 (4.32)

Noting that pairs of Grassmann variables and creation or annihilation ope-

rators commute:

[χia
†
i ,χja

†
j ] = χia

†
iχja

†
j − χja

†
jχia

†
i = −χiχja

†
ia
†
j + χjχia

†
ja
†
i

= χjχia
†
ia
†
j − χjχia

†
ia
†
j = 0 (4.33)

we can show that the two definitions of Eq. (4.32) are really the same:

|χ〉 = exp
{
−
∑

i

χia
†
i

}
|0〉 =

∏

i

exp
{
−χia

†
i

}
|0〉 =

∏

i

(
1 − χia

†
i

)
|0〉

(4.34)

We show that |χ〉 is indeed an eigenstate for ai with eigenvalue χi:

ai|χ〉 = ai
∏

j

(
1 − χja

†
j

)
|0〉

=
∏

j 6=i

(
1 − χja

†
j

)
ai
(
1 − χia

†
i

)
|0〉 =

∏

j 6=i

(
1 − χja

†
j

)
χiaia

†
i |0〉 using Eq. (4.30)

=
∏

j 6=i

(
1 − χja

†
j

)
χi|0〉 =

∏

j 6=i

(
1 − χja

†
j

)
χi(1 − χia

†
i)|0〉 because χ2

i = 0

= χi|χ〉
2see ibid., p. 29.
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(4.35)

The adjoint of a coherent state is

〈χ| = 〈0| exp
{
−
∑

j

(
χja

†
j

)†}
= 〈0| exp

{∑

j

χ∗jaj
}
= 〈0|

∏

j

(
1+χ∗jaj

)

(4.36)

This state is a left eigenfunction of a†i

〈χ|a†i = 〈χ|χ∗i (4.37)

The effect of a creation operator a†i on a state |χ〉 is

a†i |χ〉 = a
†
i

∏

j

(
1 − χja

†
j

)
|0〉 =

∏

j 6=i

(
1 − χja

†
j

)
a†i
(
1 − χia

†
i

)
|0〉

=
∏

j 6=i

(
1 − χja

†
j

)
a†i |0〉 because a†ia

†
i = 0

= −
∂

∂χi
(1 − χia

†
i

)∏

j 6=i

(
1 − χja

†
j

)
|0〉 = −

∂

∂χi
|χ〉 (4.38)

and in the same way

〈χ|ai =
∂

∂χ∗i
〈χ| (4.39)

The coherent states now form an overcomplete basis of the generalized

Fock space, and two states |χ〉 and |χ ′〉 have an overlap:

〈χ ′|χ〉 = 〈0|
∏

i

(
1 + χ∗iai

)∏

j

(
1 − χja

†
j

)
|0〉 = 〈0|

∏

i

(
1 + χ∗iai

)(
1 − χia

†
i

)
|0〉

= 〈0|
∏

i

(
1 − χ∗iaiχia

†
i

)
|0〉 =

∏

i

(
1 + χ∗iχi

)
= exp

{∑

i

χ∗iχi
}

(4.40)

One can then prove that the unit of the physical Fock space F can be

written as3

∫∏

i

dχ∗idχie
∑
i χ
∗
iχi |χ〉〈χ| = 1 (4.41)

3for the proof see ibid., p. 31.
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4.1 DMFT self consistency condition for the Hubbard model

We consider the Hubbard Hamiltonian

H = −
∑

ijσ

tijc
+
iσcjσ − µ

∑

iσ

c+iσciσ +
U

2

∑

iσσ ′
σ6=σ ′

c+iσciσc
+
iσ ′ciσ ′ (4.42)

where the spin and orbital index σ runs from 1 toN. The partition function

corresponding to this Hamiltonian is

Z =

∫∏

i

Dc̄iσDciσe
−S (4.43)

with the action

S =

∫β

0
dτ
∑

iσ

c̄iσ(τ)
∂

∂τ
ciσ(τ) +

∫β

0
dτ

[
−
∑

ijσ

tijc̄iσ(τ)cjσ(τ) − µ
∑

iσ

c̄iσ(τ)ciσ(τ)

+
U

2

∑

iσσ ′
σ6=σ ′

c̄iσ(τ)ciσ(τ)c̄iσ ′(τ)ciσ ′(τ)

]

(4.44)

where the fermion operators c+iσ, ciσ of the Hamiltonian have been replaced

by Grassmann variables c̄iσ(τ), ciσ(τ).
The cavity method now requires that we focus on one site i = o and

separate the Hamiltonian (4.42) into three parts, one relating to site o
only, one connecting this site to the lattice and one for the lattice with site

o removed:

H = Ho +Hc +H
(o) (4.45)

Ho = −µ
∑

σ

c+oσcoσ +
U

2

∑

σσ ′
σ6=σ ′

c+oσcoσc
+
oσ ′coσ ′ (4.46)

Hc = −
∑

iσ

[
tioc

+
iσcoσ + toic

+
oσciσ

]
(4.47)

H(o) = −
∑

i 6=o j 6=oσ
tijc

+
iσcjσ − µ

∑

i 6=oσ
c+iσciσ +

U

2

∑

i 6=oσσ ′
σ6=σ ′

c+iσciσc
+
iσ ′ciσ ′

(4.48)
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The three parts of the Hamiltonian correspond to the action So of site o,

the action ∆S for the interaction between site o and the lattice, and the

action S(o) of the lattice without site o:

So =

∫β

0
dτ

[∑

σ

c̄oσ(τ)
( ∂
∂τ

− µ
)
coσ(τ) +

U

2

∑

σσ ′
σ6=σ ′

c̄oσ(τ)coσ(τ)c̄oσ ′(τ)coσ ′(τ)

]

(4.49)

∆S =−

∫β

0
dτ

[∑

iσ

tioc̄iσ(τ)coσ(τ) + toic̄oσ(τ)ciσ(τ)

]
(4.50)

S(o) =

∫β

0
dτ

[∑

i 6=oσ
c̄iσ(τ)

( ∂
∂τ

− µ
)
ciσ(τ) −

∑

i 6=o j 6=oσ
tijc̄iσ(τ)cjσ(τ)

(4.51)

+
U

2

∑

i 6=oσσ ′
σ6=σ ′

c̄iσ(τ)ciσ(τ)c̄iσ ′(τ)ciσ ′(τ)

]

The aim is now to integrate out all lattice degrees of freedom except those

of site o in order to find the effective dynamics at site o. In that process,

the action So remains unchanged, the terms of ∆S are expanded in terms of

the hopping t which becomes small with increasing dimension and averaged

with respect to the action S(o). Defining ∆S(τ) via ∆S =
∫β

0 dτ∆S(τ) the

partition function is

Z =

∫
Dc̄oσDcoσe

−So

∫∏

i 6=o
Dc̄iσDciσe

−S(o)e−
∫β

0 dτ∆S(τ) (4.52)

Now we can expand the last exponential function as

e−
∫β

0 dτ∆S(τ) = 1−

∫β

0
dτ∆S(τ)+

1

2!

∫β

0
dτ1

∫β

0
dτ2∆S(τ1)∆S(τ2)− . . .

(4.53)

Taking into account that in general an operator average with respect to an

action S can be expressed as

〈A〉S =
∫∏

iDc̄αDcαe
−SA[c̄α, cα]∫∏

iDc̄αDcαe
−S

= Z−1
s

∫∏

i

Dc̄αDcαe
−SA[c̄α, cα]
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(4.54)

we can consider the second functional integral in (4.52) to average the

terms of the expansion (4.53) with respect to the lattice action S(o):

Z =

∫∏

i

Dc̄oσDcoσe
−SoZS(o)

{
1 −

∫β

0
dτ 〈∆S(τ)〉S(o)

+
1

2!

∫β

0
dτ1

∫β

0
dτ2 〈∆S(τ1)∆S(τ2)〉S(o) − . . .

}

(4.55)

Here, the partition function of the lattice without site o is abbreviated as

ZS(o) =

∫∏

i

Dc̄αDcαe
−S(o) . (4.56)

Now the terms in (4.55) with odd powers of ∆S will average to zero. For

example,

〈∆S(τ)〉S(o) =
∑

iσ

tio〈c̄iσ(τ)〉S(o)coσ(τ)+toic̄oσ(τ)〈ciσ(τ)〉S(o) = 0 , (4.57)

because the average 〈. . . 〉S(o) acts on all sites except o. The next average

in (4.55) yields

〈∆S(τ1)∆S(τ2)〉S(o) =
〈
Tτ

[∑

iσ

tioc̄iσ(τ1)coσ(τ1) + toic̄oσ(τ1)ciσ(τ1)

]
×

×
[∑

jσ ′

tjoc̄jσ ′(τ2)coσ ′(τ2) + tojc̄oσ ′(τ2)cjσ ′(τ2)

]〉
S(o)

=
∑

ijσσ ′

tiotojcoσ(τ1)〈Tτc̄iσ(τ1)cjσ ′(τ2)〉S(o) c̄oσ ′(τ2)

+
∑

ijσσ ′

toitjoc̄oσ(τ1)〈Tτciσ(τ1)c̄jσ ′(τ2)〉S(o) coσ ′(τ2)

= 2
∑

ijσσ ′

tiotojc̄oσ(τ1)〈Tτciσ(τ1)c̄jσ ′(τ2)〉S(o) coσ ′(τ2)

= 2
∑

ijσ

tiotojc̄oσ(τ1)〈Tτciσ(τ1)c̄jσ(τ2)〉S(o) coσ(τ2)

= −2
∑

ijσ

tiotojc̄oσ(τ1)G
(o)
ij σ(τ1 − τ2)coσ(τ2)
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(4.58)

The imaginary time ordering operatore Tτ enters because the path integral

leads to imaginary time ordering. Only terms with σ = σ ′ contribute as

we are considering a paramagnetic state and thus 〈Tτciσ(τ1)c̄jσ ′(τ2)〉S(o) =
δσσ ′〈Tτciσ(τ1)c̄jσ(τ2)〉S(o). We have identified the average with the cavity

Greens function G
(o)
ij σ(τ1 − τ2) = −〈Tτciσ(τ1)c

+
jσ(τ2)〉S(o), i. e. the Greens

function of the Hubbard model without the site o. Now we have for the

partition function

Z =

∫∏

σ

Dc̄oσDcoσe
−SoZS(o)×

×
{

1 −

∫β

0
dτ1

∫β

0
dτ2

∑

ijσ

tiotojc̄oσ(τ1)coσ(τ2)G
(o)
ij σ(τ1 − τ2) + . . .

}

(4.59)

We would like to write the bracket {. . . } in (4.59) again as an exponential

function in order to identify an effective action Seff:

Z =

∫∏

i

Dc̄oσDcoσe
−Seff (4.60)

Noting that the next term in the expansion of (4.59) would read

∫β

0
dτ1

∫β

0
dτ2

∫β

0
dτ3

∫β

0
dτ4

∑

i1 i2 j1 j2 σ

c̄oσ(τ1)c̄oσ(τ3)coσ(τ2)coσ(τ4)×

× ti1 oti2 oto j1to j2G(o)
i1 i2 j1 j2 σ

(τ1 τ3, τ2 τ4) .

(4.61)

We can write for the partion function (4.59)

Z =

∫∏

i

Dc̄oσDcoσe
−SoZS(o)×

× exp

{
−

∞∑

n=1

∑

σ

∫β

0
dτ1 . . .

∫β

0
dτ2n c̄oσ(τ1) . . . c̄oσ(τ2n−1)coσ(τ2) . . . coσ(τ2n)×

×
∑

i1,...,in
j1,...,jn

ti1 o . . . tin oto j1 . . . to jnG
(o)
i1...in j1...jn σ

(τ1 . . . τ2n−1, τ2 . . . τ2n)

}
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(4.62)

All terms but the first in this sum over n turn out to be at least of order

1/d so that they vanish in the limit of infinite dimension d =∞. Thus, in

this limit we find for the effective action

Seff = So +
∑

σ

∫β

0
dτ1

∫β

0
dτ2 c̄oσ(τ1)coσ(τ2)

∑

ij

tiotojG
(o)
ij σ(τ1 − τ2)

=

∫β

0
dτ

[∑

σ

c̄oσ(τ)
( ∂
∂τ

− µ
)
coσ(τ) +

U

2

∑

σσ ′
σ6=σ ′

c̄oσ(τ)coσ(τ)c̄oσ ′(τ)coσ ′(τ)

]

+
∑

σ

∫β

0
dτ1

∫β

0
dτ2 c̄oσ(τ1)coσ(τ2)

∑

ij

tiotojG
(o)
ij σ(τ1 − τ2)

(4.63)

and introducing the Weiss field

G−1
σ (τ1 − τ2) = −

( ∂
∂τ1

− µ
)
δτ1 τ2 −

∑

ij

tiotojG
(o)
ij σ(τ1 − τ2) (4.64)

we finally get

Seff = −
∑

σ

∫β

0
dτ1

∫β

0
dτ2 c̄oσ(τ1)G

−1
σ (τ1 − τ2)coσ(τ2)

+

∫β

0
dτ
U

2

∑

σσ ′σ6=σ ′
c̄oσ(τ)coσ(τ)c̄oσ ′(τ)coσ ′(τ) (4.65)

The equation

G
(o)
ij σ = Gij σ −Gio σG

−1
ooσGoj σ (4.66)

is needed to relate the cavity Greens function to the Greens function of

the lattice Gij σ. Going from imaginary time to imaginary frequency and

combining with (4.66), the Weiss function (4.64) reads

G−1
σ (iωn) = iωn + µ−

∑

ij

tiotojG
(o)
ij σ(iωn)

= iωn + µ−
∑

ij

tiotoj

[
Gij σ(iωn) −Gio σ(iωn)G

−1
ooσ(iωn)Goj σ(iωn)

]
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(4.67)

If we now go from real space to k space we can simplify this equation.

Introducing the Fourier transform Gkσ via

Gij σ(iωn) =
∑

k

eikRijGkσ(iωn) (4.68)

we find
∑

i

tioGio σ(iωn) =
∑

i

tio
∑

k

eikRioGkσ(iωn) =
∑

k

εkGkσ(iωn)

∑

ij

tiotojGij σ(iωn) =
∑

ij

tiotoj
∑

k

eikRijGkσ(iωn)

=
∑

k

∑

i

tioe
ikRio
∑

j

toje
ikRojGkσ(iωn) =

∑

k

ε2
kGkσ(iωn)

(4.69)

In the general form of the Greens function G−1
kσ(iωn) = iωn + µ − εk −

Σσ(iωn) we introduce the abbreviation ξ = iωn + µ − Σσ(iωn) to get

G−1
kσ(iωn) = ξ− εk and determine the sums

∑

k

εkGkσ(iωn) =
∑

k

εk

ξ− εk
=
∑

k

εk − ξ+ ξ

ξ− εk
= −1 +

∑

k

ξ

ξ− εk

= −1 + ξ
∑

k

Gkσ(iωn) = −1 + ξGooσ(iωn)

∑

k

ε2
kGkσ(iωn) =

∑

k

ε2
k

ξ− εk
=
∑

k

εk(εk − ξ) + εkξ

ξ− εk
=
∑

k

εk + ξ
∑

k

εk

ξ− εk

= ξ
(
−1 + ξGooσ(iωn)

)
= −ξ+ ξ2Gooσ(iωn)

(4.70)

With this, the Weiss function (4.67) becomes

G−1
σ (iωn) = iωn + µ−

∑

k

ε2
kGkσ(iωn) +

(∑

k

εkGkσ(iωn)
)2
G−1
ooσ(iωn)

= iωn + µ+ ξ− ξ2Gooσ(iωn)

+
(
−1 + ξGooσ(iωn)

)(
−G−1

ooσ(iωn) + ξ
)

= iωn + µ− ξ+G−1
ooσ(iωn) = Σσ(iωn) +G

−1
ooσ(iωn)
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(4.71)

The effective action (4.65) can now be interpreted in terms of the Anderson

impurity model, i. e. the Anderson impurity model gives rise to an action

which becomes identical to (4.65) if an additional self consistency condition

is fulfilled. The Hamiltonian for the Anderson impurity model is

H =
∑

kσ

εkc
+
kσckσ+

∑

kσ

(
Vkc

+
kσfσ+V

∗
kf

+
σckσ

)
−
∑

σ

µf+σ fσ+
U

2

∑

σσ ′
σ6=σ ′

f+σ fσf
+
σ ′fσ ′

(4.72)

where σ runs from 1 to the degeneracy N. The action corresponding to

this Hamiltonian will consist of a purely local part So concerning only the

f electrons

So =

∫β

0
dτ

[∑

σ

f̄σ(τ)
( ∂
∂τ

−µ
)
fσ(τ)+

U

2

∑

σσ ′
σ6=σ ′

f̄σ(τ)fσ(τ)f̄σ ′(τ)fσ ′(τ)

]

(4.73)

and a part involving conduction band electrons that can be integrated out:

S = So +

∫β

0
dτ
∑

kσ

[
c̄kσ(τ)

( ∂
∂τ

+ εk

)
ckσ(τ) + Vkc̄kσ(τ)fσ(τ) + V

∗
k f̄σ(τ)ckσ(τ)

]

(4.74)

Now the partition function for the Hamiltonian (4.72) is

Z =

∫
Df̄σDfσ

∫∏

i

Dc̄iσDciσe
−S =

∫
Df̄σDfσ e

−So

∫∏

i

Dc̄iσDciσ×

× exp

{∫β

0
dτ
∑

kσ

[
c̄kσ(τ)

( ∂
∂τ

+ εk

)
ckσ(τ)+ Vkc̄kσ(τ)fσ(τ) + V

∗
k f̄σ(τ)ckσ(τ)

]}

=

∫
Df̄σDfσ e

−So
∏

k

det
( ∂
∂τ

+ εk

)
×

× exp

{∑

kσ

∫β

0
dτ1

∫β

0
dτ2 f̄σ(τ1)V

∗
kVk

( ∂
∂τ1

+ εk

)−1
δτ1 τ2fσ(τ2)

}

(4.75)
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In the last step, the terms involving f electrons V∗k f̄σ(τ) and Vkfσ(τ) were

taken as source terms, which makes the term in the exponent a Gaussian

integral that can be evaluated directly. The determinant constitutes a con-

stant factor in the partition function that doesn’t concern us here. We are

left with an action for the f electrons that reads

Sf =

∫β

0
dτ1

∫β

0
dτ2

∑

σ

f̄σ(τ1)

[( ∂
∂τ1

− µ
)
δτ1 τ2 −

∑

k

|Vk|
2
( ∂
∂τ1

+ εk

)−1
δτ1 τ2

]
fσ(τ2)

+

∫β

0
dτ
U

2

∑

σσ ′
σ6=σ ′

f̄σ(τ)fσ(τ)f̄σ ′(τ)fσ ′(τ)

(4.76)

If we now compare this to the effective action of the Hubbard model (4.65),

we see that they are identical if we require that the Weiss function G(τ1 −
τ2) fulfils the condition

G−1(τ1 −τ2) = −
( ∂
∂τ1

−µ
)
δτ1 τ2 +

∑

k

|Vk|
2
( ∂
∂τ1

+ εk

)−1
δτ1 τ2 (4.77)

Going from imaginary time to imaginary frequency, this equation reads

G−1(iωn) = iωn + µ−
∑

k

|Vk|
2

iωn − εk
(4.78)

Here we can identify the usual definition of the hybridization function

∆(iωn) in the Anderson impurity model

∆(iωn) =
∑

k

|Vk|
2

iωn − εk
(4.79)

If we now equate Weiss functions (4.71) and (4.78) we find the DMFT

selfconsistency condition in terms of a prescription for ∆(iωn)

∆(iωn) = iωn + µ− Σσ(iωn) −G
−1
ooσ(iωn) (4.80)

On the Bethe lattice and with a half band width of 2t, we have a nonin-

teracting density of states

ρ0(ε) =
1

2πt2

√
4t2 − ε2 (4.81)
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and thus we can write for the local Greens function

Gooσ(ω) =
∑

k

Gk(ω) =
∑

k

1

ζ− εk
with ζ = ω+ µ− Σσ(ω)

=

∫
dε
ρ0(ε)

ζ− ε
=

1

2πt2

∫ 2t

−2t
dε

√
4t2 − ε2

ζ− ε
=

1

2t2

(
ζ− sgn(ζ)

√
ζ2 − 4t2

)

(4.82)

From this we gain the expression

t2Gooσ(ω) − ζ+G−1
ooσ(ω) = 0 , (4.83)

which combined with Eq. (4.80) leads to a simplified form of the selfcon-

sistency condition

∆(iωn) = t
2Gooσ(iωn) . (4.84)

4.2 Semiclassical approximation

The Hamiltonian is given as

H = −t
∑

〈ij〉σ
(c+iσcjσ + h.c.) +U

∑

i

ni↑ni↓, (4.85)

where t is the hopping matrix between sites and U is the Coulomb repul-

sion. The partition function Z for many-body system is

Z = Tre−βH =

∫
D[c†c]e−Seff, (4.86)

where the effective action Seff is

Seff = −

∫β

0
dτ

∫β

0
dτ

′
c†(τ)a(τ, τ

′
)c(τ

′
)+

∫β

0
dτUni↑(τ)ni↓(τ). (4.87)

Here, a(τ, τ
′
) = G−1

0 (τ− τ
′
) and β = 1

T
. We can decompose n↑n↓ into

n↑n↓ =
1

4

(
(n↑ + n↓)

2 − (n↑ − n↓)
2
)
=

1

4
(N2 −M2), (4.88)

where N(τ) is the particle number and M(τ) is the magnetization. Now,

the effective action is rewritten as

Seff = −

∫β

0
dτ

∫β

0
dτ

′
c†(τ)a(τ, τ

′
)c(τ

′
) +

U

4

∫β

0
dτ
(
N2(τ) −M2(τ)

)
.
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(4.89)

If we substitute N(τ) by 〈N〉, where 〈N〉 = 1 at half-filling, the partition

function is

Z =

∫
D[c†c]e

∫β

0
dτ

∫β

0
dτ

′
c†(τ)a(τ, τ

′
)c(τ

′
) +

U

4

∫β

0
dτM2(τ)

e
−
βU

4 ,

(4.90)

where term βU
4 shifts the energy at −U

4 and plays the same role like a

chemical potential. It does not affect the Green’s function, so we neglect

the term e−
βU
4 .

Now, let us use a Hubbard-Stratonovich (HS) transformation. The HS

transformation introduces a new auxiliary field. The HS transformation

is given as
∫∞

−∞
dxe−πx

2 + 2
√
πAx = eA

2
, (4.91)

where A is a number and x is an auxiliary field. Using the HS transforma-

tion, we obtain the partition function with auxiliary field φ:

Z =

∫
D[c†c]D[φ]e

∫β

0
dτ

∫β

0
dτ

′
c†(τ)a(τ, τ

′
)c(τ

′
) −

∫β

0
dτ
(φ2(τ)

4U
−
φ(τ)M(τ)

2

)

,

(4.92)

where A =
√
UM
2 and x = φ√

4Uπ
from Eq. (7). In general, the semiclassical

field φ is a function of the imaginary time τ, but in this approximation we

assume it to be τ-independent (why we call semiclassical approximation).

Let us employ M(τ) =
∫β

0 dτ
′
c†(τ)σzδ(τ− τ

′
)c(τ

′
) in Eq. (8), where σz

is the Pauli matrix. In that case, the partition function is given as

Z =

∫
D[c†c]

∫∞

−∞
dφe

−
βφ2

4U
+

∫β

0
dτ

∫β

0
dτ

′
c†(τ)

(
a(τ, τ

′
) +

1

2
φσzδ(τ− τ

′
)
)
c(τ

′
)

(4.93)

After a Fourier transformation from imaginary time τ to Matsubara fre-

quency ωn, we can rewrite the partition function in the Matsubara fre-
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quency space:

Z =

∫
D[c†c]

∫∞

∞
dφe

−
φ2β

4U
+ β
∑

ωn

c†(ωn)
(
a(ωn) +

1

2
φσz

)
c(ωn)

.

(4.94)

Using e
∑
ωn

c†(ωn) =
∏
ωn

(
1+c†(ωn)c(ωn)

)
, we can express the partition

function:

Z =

∫
D[c†c]

∫∞

∞
dφe

−
βφ2

4U
∏

ωn

(
1 + c†(ωn)c(ωn)

)
(4.95)

With Grassmann integration
∫
dc†dc = 0 and

∫
dc†dcac†c = −a

∫
c†dc† =

−a, the partition function is

Z =

∫∞

∞
dφe

−
βφ2

4U
+
∑

ωn

ln det
[
− β(a(ωn) +

1

2
φσz)

]

. (4.96)

The general partition function for single-site calculations is

Z =

∫∞

−∞
dφe−βV(φ), (4.97)

with V(φ) = φ2

4U−T
∑
ωn

ln det[−β(a(ωn)+Λ(φ, s))]. Note that a(ωn)

and Λ(φ, s) are 2 × 2 matrices, where s = 1
2 ,−1

2 . Some permutations of

the rows and the columns matrix lead to a diagonal matrix, which looks

diag(a↑,a↓), where a↑(a↓) is a 1 × 1 matrix. In that case, the potential

can be rewritten as

V(φ) =
1

U
φ2 − T

∑

ωn,σ=↑,↓
ln det

[
− β(a(ωn) +Λσ(φ))

]
, (4.98)

where σz = 1(−1) if σ =↑ (↓). Finally, the impurity Green’s function is

Gimp
σ (iωn) =

1

Z

∫∞

−∞
dφe−βV(φ)

(
aσ(ωn) +Λσ(φ)

)
, (4.99)

from G
imp
σ (iωn) =

∂ ln Z
∂a

.

The dynamical mean field theory (DMFT) self-consistent loop:
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(1) Set the self-energy Σ(iωn) = 0 and Σ(ω) = 0, where ωn and ω are

the Matsubara frequency and real frequency, respectively.

(2) Using DMFT self-consistent equation (Hilbert transformation) and

Dyson’s equation, the Weiss field G0(iωn) and G0(ω). The DMFT

self-consistent equation is given as

Gimp(iωn) =

∫BZ

dk
1

iωn + µ− εk − Σ(iωn)
, (4.100)

and

1

G0(iωn)
= Σ(iωn) +

1

Gimp(iωn)
. (4.101)

(3) Insert G0(iωn) into the semiclassical approximation impurity solver

and calculate the new self-energy by Dyson’s equation.

Σnew(iωn) =
1

G0(iωn)
−

1

Gimp(iωn)
. (4.102)

(4) The new self-energy are inserted into (2) process. This DMFT iterations

are repetitive and after several iterations, we can obtain the converged

self-energy Σ(iωn).

It is recommended to write a code for the semiclassical approximation by

solving only Eqs. (4.97), (4.98) and (4.99).
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