
1. Single particle methods

1.1 The tight binding method

There are two ways of dealing with the periodic arrays of atoms in crystals;

in one picture which is suitable for simple metals and covalent semicon-

ductors, Bloch electron wave functions are considered to be waves that are

little affected by the positions of the atoms: this works whenever the crystal

potential is a smooth function and the atomic positions are not critical for

the understanding. A different picture, suitable for insulators, but also for

covalent semiconductors, considers electrons to move through the crystal

slowly (or not at all) and to therefore belong to an atom for some time

before moving on. The electrons are “tightly bound” to the atom and only

move on for energetic reasons.

We start to introduce this description1 by writing the potential of the

electrons V(
⇀
r) in a crystal as a sum of atomic potentials

V(
⇀
r) =

∑
⇀
R

Vatom(
⇀
r−

⇀

R) (1.1)

where the sum runs over the lattice vectors; first we treat the case of one

atom per unit cell. This potential is periodic by construction because for a

lattice vector
⇀

R0

V(
⇀
r+

⇀

R0) =
∑
⇀
R

Vatom(
⇀
r+

⇀

R0−
⇀

R)
⇀
R ′=

⇀
R−

⇀
R0=

∑
⇀
R ′

Vatom(
⇀
r+

⇀

R ′) = V(
⇀
r) (1.2)

Setting
 h2

2m = 1, the crystal Hamiltonian is

H = −∇2 + V(
⇀
r) . (1.3)

We now try to relate the electron wave function to the atomic orbitals

satisfying

Hatomφn ≡
(
−∇2 + Vatom(

⇀
r)
)
φn = εnφn . (1.4)

1This closely follows a tight binding note by Warren Pickett.
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With a simple linear combination Φn(
⇀
r) =

∑
⇀
R
φn(

⇀
r−

⇀

R) one has difficul-

ties fulfilling the Bloch theorem but the ansatz

B
n
⇀
k
(
⇀
r) =

1√
N

∑
⇀
R

ei
⇀
k·

⇀
Rφn(

⇀
r−

⇀

R) (1.5)

fulfils the Bloch condition for the wave vector
⇀

k:
√
NB

n
⇀
k
(
⇀
r+

⇀

R0) =
∑
⇀
R

ei
⇀
k·

⇀
Rφn(

⇀
r+

⇀

R0 −
⇀

R)

⇀
R ′=

⇀
R−

⇀
R0=

∑
⇀
R ′

ei
⇀
k·(

⇀
R ′+

⇀
R0)φn(

⇀
r−

⇀

R ′) = ei
⇀
k·

⇀
R0B

n
⇀
k
(
⇀
r) (1.6)

Here, it is enough to consider
⇀

k vectors from the first Brillouin zone.

The Bloch sum itself is not an eigenfunction for the crystal, but we can

now try to expand the electron wave function in these Bloch sums:

ψ⇀
k
(
⇀
r) =

∑

n

bn(
⇀

k)B
n
⇀
k
(
⇀
r) . (1.7)

The functions ψ⇀
k
(
⇀
r) should now solve the Schrödinger equation

Hψ⇀
k
= ε⇀

k
ψ⇀
k

(1.8)

with the ε⇀
k

representing the energy bands of the crystal. In order to find

the conditions for the solution, we now calculate matrix elements by multi-

plying from the left with Bloch sums B∗
m

⇀
k

and integrating over the crystal:

∑

n

Hmn(
⇀

k)bn(
⇀

k) = ε⇀
k

∑

n

Smn(
⇀

k)bn(
⇀

k) (1.9)

with

Hmn(
⇀

k) =

∫
d3r B∗

m
⇀
k
(
⇀
r)HB

n
⇀
k
(
⇀
r)

Smn(
⇀

k) =

∫
d3r B∗

m
⇀
k
(
⇀
r)B

n
⇀
k
(
⇀
r) (1.10)

which are called Hamiltonian matrix and overlap matrix. Written without

indices the secular equation is
(
H(

⇀

k) − ε⇀
k
S(

⇀

k)
)
b(

⇀

k) = 0 (1.11)
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Now we can work out what the matrixes are by substituting the Bloch

sums:

Hmn(
⇀

k) =
1

N

∑
⇀
R1,

⇀
R2

ei
⇀
k·(

⇀
R2−

⇀
R1)

∫
d3r φ∗m(

⇀
r−

⇀

R1)Hφn(
⇀
r−

⇀

R2)︸ ︷︷ ︸
Hmn(

⇀
R2−

⇀
R1)

(1.12)

The cell periodicity of the Hamiltonian means that we can change the

summation to
⇀

R =
⇀

R2−
⇀

R1) so that
∑

⇀
R1

just gives a factor N and we find

Hmn(
⇀

k) =
∑
⇀
R

ei
⇀
k·

⇀
RHmn(

⇀

R) (1.13)

Hmn(
⇀

k) and Hmn(
⇀

R) are lattice Fourier transforms of each other. Analo-

gously one finds

Smn(
⇀

k) =
∑
⇀
R

ei
⇀
k·

⇀
RSmn(

⇀

R) (1.14)

The real space integral

Hmn(
⇀

R) =

∫
d3rφ∗m(

⇀
r)Hφn(

⇀
r−

⇀

R) (1.15)

indicates the amount of coupling between orbital φm at the origin and

φn at the site
⇀

R; it is the hopping amplitude of an electron in orbital φn
at site

⇀

R to the orbital φm at the origin. The discussion can be limited

to small |
⇀

R| (few neighbours) as the integral will otherwise be negligible.

The discussion for Smn(
⇀

R), the overlap of φm(
⇀
r) and φn(

⇀
r−

⇀

R) runs very

similarly.

Going beyond the elemental crystal, there can be various atoms at positions
⇀
τi (with respect to the origin

⇀

R of the cell); then the atomic basis orbitals

are φm(
⇀
r−

⇀

R) −
⇀
τi). The basis Bloch sums become

B
mi

⇀
k
(
⇀
r) =

1√
N

∑
⇀
R

ei
⇀
k·(

⇀
R+

⇀
τi)φn(

⇀
r−

⇀

R) −
⇀
τi) (1.16)

3



We then get

Hmi,nj(
⇀

k) =
1

N

∑
⇀
R1,

⇀
R2

ei
⇀
k·(

⇀
R2+

⇀
τj−

⇀
R1−

⇀
τi)

∫
d3rφ∗m(

⇀
r−

⇀

R1 −
⇀
τi))Hφn(

⇀
r−

⇀

R2 −
⇀
τj))

=
1

N
e−i

⇀
k·⇀τi

∑
⇀
R1,

⇀
R2

ei
⇀
k·(

⇀
R2−

⇀
R1)Hmi,nj(

⇀

R2 −
⇀

R1 +
⇀
τj −

⇀
τi)e

i
⇀
k·⇀τj

= e−i
⇀
k·⇀τi
(∑

⇀
R

Hmi,nj(
⇀

R)ei
⇀
k·

⇀
R

)
ei

⇀
k·⇀τj = e−i

⇀
k·⇀τiH0

mi,nj(
⇀

k)ei
⇀
k·⇀τj

(1.17)

where the notation Hmi,nj(
⇀

R) = Hmi,nj(
⇀

R+
⇀
τj−

⇀
τi) was used. This can be

viewed as the matrix H0(
⇀

k) transformed by the unitary transformation

Umi,nj(
⇀

k) = e−i
⇀
k·⇀τjδmnδij (1.18)

which obeys U+U = 1I = U−1U. A unitary transformation of a Hermitian

matrix does not affect its eigenvalues, it only transforms the eigenvectors.

Thus, unless there is specific reason to include the phase factors in Eq. 1.17,

they can be disregarded.

Now the terms entering the Hamiltonian can be determined. We start with

the single site terms with
⇀

R = 0 when both orbitals are at the same site.

We split the crystal Hamiltonian into the atomic Hamiltonian for the atom

at the origin plus the potential for all the other atoms:

H = −∇2 + Vatom(
⇀
r) +

∑
⇀
R 6=0

Vatom(
⇀
r−

⇀

R)

= −∇2 + Vspherical
atom (

⇀
r) + Vnonspherical

atom (
⇀
r) +

∑
⇀
R 6=0

Vatom(
⇀
r−

⇀

R)

= H
spherical
atom (

⇀
r) + ∆V(

⇀
r) (1.19)

The integral results primarily from the spherical atomic Hamiltonian, with

orthogonal atomic orbitals

Hmn(0) =

∫
d3rφ∗m(

⇀
r)Hatom(

⇀
r)φn(

⇀
r) = εnδmn (1.20)

which gives atomic eigenvalues εn.
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The quantity ∆V(
⇀
r) has the symmetry of the atom in the crystal which

is not spherical but discrete (mirror planes, rotation or screw axes). This

crystal field, i.e. the nonspherical potential due to the crystal, will split

some eigenvalues that would be degenerate in a spherical potential. An

example is the splitting in a cubic crystal field of the five d orbitals into

the t2g manifold (xy,yz, zx) and the eg manifold (x2 − y2, 3z2 − 1). This

means that a transition metal ion in a cubic site has instead of a single

onsite energy εd two energies εt2g and εeg which can split further if the

octahedral environment of the transition metal ion is distorted.

If we now consider the general integrals (1.15) they contain three center

integrals (φm(
⇀
r) is centered at

⇀

R = 0, φn(
⇀
r −

⇀

R) is centered at
⇀

R and H

involves potential contributions Vatom(
⇀
r−

⇀

R ′) centered at all
⇀

R ′). Following

the important paper J. C. Slater, G. F. Koster, Phys. Rev. 94, 1498 (1954),

the two center approximation is widely used. This means that the the

multitude of integrals (1.15) is restricted to two center integrals denoted as

(ssσ), (spσ), (ppσ), (ppπ), (sdσ), (pdσ), (pdπ), (ddσ), (ddπ), (ddδ)
and so on. Arguments are i) three-center integrals are less important than

two-center integrals in principle, and ii) the purpose of the tight binding

method is often to represent the bandstructure of a material (calculated

with more elaborate methods) with as few parameters as possible, and

in the course of a fitting process some effect of the three-center integrals

can be absorbed into the two-center parameters. Following this logic, the

Hamiltonian matrix elements or hopping integrals are often called tight

binding parameters (and denoted with the letter t: tmn(
⇀

R) ≡ Hmn(
⇀

R)). For

the overlap matrix the usual notation is smn(
⇀

R) ≡ Smn(
⇀

R) with smn(0) =
δmn expressing the orthonormality of the atomic orbitals.

Simple examples

We only consider the case of one s-like function on each atom; the tight

binding matrix is then (1 × 1) and directly gives an expression for the

energy bands ε⇀
k
.

1D linear chain of atoms: The atom at the origin has two nearest neigh-

bours at ±a, and the hopping amplitude is t1. Eq. (1.13) yields

Hss(k) = εs+t1
∑

R

eikR = εs+t1(e
ika+e−ika) = εs+2t1 cos(ka) (1.21)
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and the overlap is

Sss(k) = 1 + s1
∑

R

eikR = = 1 + 2s1 cos(ka) (1.22)

Thus, the secular equation (1.11) is solved by

εk =
εs + 2t1 cos(ka)

1 + 2s1 cos(ka)
(1.23)

Adding the effects of hopping to second neighbours at ±2a with hopping

amplitude t2 involves doubled frequencies (cos(2ka)):

εk =
εs + 2t1 cos(ka) + 2t2 cos(2ka)

1 + 2s1 cos(ka) + 2s2 cos(2ka)
(1.24)

2D square lattice of atoms: The nearest neighbour sum runs over the

sites
⇀

R = (a, 0), (0,a), (−a, 0), (0,−a), and the lattice sum becomes

∑
⇀
R

ei
⇀
k·

⇀
R =

∑

p=±1
eikxap+

∑

q=±1
eikyaq = 2 cos(kxa) + 2 cos(kya) (1.25)

leading to the dispersion relation (we neglect the overlap)

ε⇀
k
= εs + 2t1 cos(kxa) + 2t1 cos(kya) (1.26)

To include second neighbours at points
⇀

R = (a,a), (−a,a), (a,−a),
(−a,−a) with amplitude t2, we use ev+w = evew and get

ε⇀
k
= εs + 2t1 cos(kxa) + 2t1 cos(kya) + 4t2 cos(kxa) cos(kya) (1.27)

1.2 Integration over the Brillouin zone

Applications of electronic structure theory imply the calculation of many

different k space integrals over the Brillouin zone or its irreducible part.

Typical examples are the total electron number n(ε)

n(ε) =
1

VG

∑

n

∫

VG

d3k θ
(
ε− εn(

⇀

k)
)

(1.28)

and its energy derivative, the density of states ρ(ε)

ρ(ε) =
1

VG

∑

n

∫

VG

d3k δ
(
ε− εn(

⇀

k)
)

(1.29)
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where VG is the volume of the primitive cell of the reciprocal lattice, and

n is the band index.

One possibility of doing such integrals is by simply introducing a fine mesh

in the reciprocal lattice and adding up the contributions from all k points.

Due to the nature of the step and delta functions, the results for the two

integrals given above are not going to be satisfactory with this most simple

method. This method is illustrated in Fig. 1.1.

k k ρ(ε)

ε ε ε

(a) true bands (b) approximate bands (c) approximate DOS
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Figure 1.1: Example of simple Brillouin zone integration.

An alternative that is sometimes used is to do the summation (1.29) by

approximating the delta function with a function that has a small finite

width, for example a Gaussian:

δ(ε) ≈ g(ε) = 2

f

√
ln 2

π
e−4 ln 2

ε2

f2 (1.30)

with full width at half maximum given by f.

Linear tetrahedron method

A far better method for Brillouin zone integration is the linear tetrahedron

method. The idea is to do the integration by splitting the volume into

tetrahedra, to evaluate the integrand at the corners of the tetrahedra and

to use linear interpolation over the tetrahedra for the integration2. An

example of how the reciprocal space can be broken up into tetrahedra is

given in Fig. 1.2. Each tetrahedron can then be split into two tetrahedra

2O. Jepsen, O. K. Andersen, Solid State Commun. 9, 1763 (1971); G. Lehmann, M. Taut, Phys. Stat.
Sol. B 54, 469 (1972); P. E. Blöchl, O. Jepsen, O. K. Andersen, Phys. Rev. B 49, (1994); H. Eschrig,
Optimized LCAO Method and the Electronic Structure of Extended Systems, Akademie-Verlag Berlin
1988.

7



by introducing a new vertex in the middle of the longest edge of each

tetrahedron.
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Figure 1.2: Splitting of a cubic reciprocal space sector into six tetrahedra.

For the derivation of the interpolation formulas, we refer to the literature.

For the calculation of the electron number and the density of states, the

only information that is required is the volume VT of the tetrahedra; for a

tetrahedron given by the vectors
⇀

k1,
⇀

k2,
⇀

k3,
⇀

k4, this can be calculated by

VT =
1

6

∣∣det(
⇀

k2 −
⇀

k1,
⇀

k3 −
⇀

k1,
⇀

k4 −
⇀

k1)
∣∣ (1.31)

Then we denote the energies of a given band by ε(
⇀

ki) ≡ εi and energy

differences by εij = εi − εj; we also sort the energies at the corners of the

tetrahedron as

ε1 < ε2 < ε3 < ε4

Now the contribution of the tetrahedron to the number of states n(ε) at
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a given energy ε is

nT(ε) =





0 for ε < ε1
VT

VG

(ε−ε1)
3

ε21ε31ε41
for ε1 < ε < ε2

VT

VG

1
ε31ε41

[
ε221 + 3ε21(ε− ε2) + 3(ε− ε2)

2 − ε31+ε42
ε32ε42

(ε− ε2)
3
]

for ε2 < ε < ε3

VT

VG

(
1 − (ε4−ε)

3

ε41ε42ε43

)
for ε3 < ε < ε4

VT

VG
for ε4 < ε

(1.32)

The contribution of the tetrahedron to the density of states ρ(ε) is simply

the energy derivative of nT(ε):

ρT(ε) =





0 for ε < ε1
VT

VG

3(ε−ε1)2

ε21ε31ε41
for ε1 < ε < ε2

VT

VG

1
ε31ε41

[
3ε21 + 6(ε− ε2) − 3

(ε31+ε42)(ε−ε2)
2

ε32ε42

]
for ε2 < ε < ε3

VT

VG

3(ε4−ε)2

ε41ε42ε43
for ε3 < ε < ε4

0 for ε4 < ε

(1.33)
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