Okayama University Faculty of Science

Research Institute for Interdisciplinary Science
Prof. Harald Jeschke
Tutor: Makoto Shimizu

Okayama, January 28, 2020
Exercises for Advanced Physics 2, 2019/20 term 4

Exercise Set 6

(Due date: Tuesday, Febuary 4, 2020)

Exercise 6 (Interchange of spins) (10 points)

We consider the Pauli spin operator $\vec{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ with

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathfrak{i} \\
\mathfrak{i} & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

that obey the relations

$$
\begin{align*}
\sigma_{i}^{2} & =1, \quad i=x, y, z \\
\sigma_{i} \sigma_{j} & =\mathfrak{i} \sigma_{k}, \quad(i, j, k) \in\{(x, y, z),(z, x, y),(y, z, x)\} \tag{1}\\
{\left[\sigma_{i}, \sigma_{j}\right]_{+} } & =\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} \mathbb{1}, \quad \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{align*}
$$

$\vec{\sigma}^{(\mathfrak{i})}, \mathfrak{i}=1,2$ is the spin operator for the particle \mathfrak{i}.
(a) Prove $\left(\vec{\sigma}^{(1)} \cdot \vec{\sigma}^{(2)}\right)^{2}=3 \mathbb{1}-2\left(\vec{\sigma}^{(1)} \cdot \vec{\sigma}^{(2)}\right)$
(b) Show that the operator

$$
\mathrm{Q}_{12}=\frac{1}{2}\left(\mathbb{1}+\overrightarrow{\boldsymbol{\sigma}}^{(1)} \cdot \vec{\sigma}^{(2)}\right)
$$

interchanges the spins of particles 1 and 2 :

$$
\begin{align*}
& \mathrm{Q}_{12} \vec{\sigma}^{(1)} \mathrm{Q}_{12}^{-1}=\vec{\sigma}^{(2)} \\
& \mathrm{Q}_{12} \vec{\sigma}^{(2)} \mathrm{Q}_{12}^{-1}=\overrightarrow{\boldsymbol{\sigma}}^{(1)} \tag{2}
\end{align*}
$$

