
3. Diamagnetism

Diamagnetism is defined by χdia < 0 where χdia = constant. The simple

explanation is that this is an induction effect: The external field induces

magnetic dipoles which, according to Lenz’s law, are oriented antiparallel

to the field and therefore χ is negative. We will see in a moment that

strictly speaking, this easily understandable picture is not quite true, as

without quantum mechanical effects, there is not even diamagnetism.

Empirically, the effect of diamagnetism is displayed by all materials; how-

ever, they are only called diamagnets if no other, stronger type of mag-

netism like paramagnetism or collective magnetism is present. Examples

for diamagnets are almost all organic substances, metals like Bi, Zn and

Hg, nonmetals like S, I and Si, and superconductors for T < Tc; in fact they

are perfect diamagnets: χdia = −1 which is called the Meissner-Ochsenfeld

effect.

3.1 Bohr-van-Leeuwen theorem

The Bohr-van Leeuwen theorem states: Magnetism is a quantum mechani-

cal effect. Strictly classically, there cannot be either dia-, para- or collective

magnetism.

Proof: We assume a solid of identical ions with translational symmetry.

Then the magnetization is

⇀

M =
N

V
〈 ⇀m〉 ,

where
⇀
m is the magnetic moment of the individual ion, andN is the number

of ions in volume V . The magnetic moment can be related to the energy

W of the magnetic system and to the Hamiltonian H:

⇀
m = −

∂W

∂
⇀

B0

= −
∂H

∂
⇀

B0

, (3.1)

where H is the classical Hamiltonian function of a single ion. The classical
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average can be calculated by

〈 ⇀m〉 = 1

Z∗

∫
· · ·
∫
dx1 . . .dx3Ne

∫
dp1 . . .dp3Ne

⇀
me−βH (3.2)

with the number of electrons Ne and with the classical partition function

Z =
Z∗

Ne!h3Ne

given by

Z∗ =

∫
· · ·
∫
dx1 . . .dx3Ne

∫
dp1 . . .dp3Nee

−βH (3.3)

with the inverse temperature β = 1
kBT

. Then

1

βZ

∂Z

∂
⇀

B0

=
1

βZ∗
∂Z∗

∂
⇀

B0

=
1

βZ∗

∫
· · ·
∫
dx1 . . .dx3Ne

∫
dp1 . . .dp3Nee

−βH

(
− β

∂H

∂
⇀

B0

)

=
1

Z∗

∫
· · ·
∫
dx1 . . .dx3Ne

∫
dp1 . . .dp3Nee

−βH ⇀
m = 〈 ⇀m〉

(3.4)

Thus,

〈 ⇀m〉 = 1

βZ

∂Z

∂
⇀

B0

. (3.5)

If we can show that Z doesn’t change when an external field
⇀

B0 is switched

on, the theorem is proven. The general form of H in the presence of a

magnetic field
⇀

B0 = ∇×
⇀

A is

H =
1

2m

Ne∑

i=1

(
⇀
pi + e

⇀

Ai)
2 +H1(x1, . . . , x3Ne) (3.6)

where H1 represents the electron-electron interactions. Then we can write

for the partition function

Z∗ =

∫
. . .

∫
dx1 . . .dx3Nee

−βH1(x1, . . . , x3Ne)×

×
∫∞

−∞
· · ·
∫∞

−∞
dp1 . . .dp3Nee

−
β

2m

Ne∑

i=1

(
⇀
pi + e

⇀

Ai)
2

(3.7)
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As the momentum integration runs from −∞ to ∞, we can substitute
⇀
ui =

⇀
pi + e

⇀

Ai without changing the limits of integration:

Z∗ =

∫
. . .

∫
dx1 . . .dx3Nee

−βH1(x1, . . . , x3Ne)×

×
∫∞

−∞
· · ·
∫∞

−∞
dp1 . . .dp3Nee

−
β

2m

Ne∑

i=1

⇀
u2
i

(3.8)

which obviously is independent of the magnetic field, Z 6= Z(B0). Thus,

the average magnetic moment vanishes in all cases:

〈 ⇀m〉 ≡ 0 .

Rigorously, classically, there is no magnetism, and it is best to always argue

quantum mechanically.

In matter, we have charged particles in motion which respond to an ex-

ternal magnetic field
⇀

B0. Either the system contains permanent magnetic

moments. Then they will order in a field and give rise to collective phe-

nomena like paramagnetism, ferromagnetism, antiferromagnetism or fer-

rimagnetism. Or, the field itself induces the magnetic moments. This is

called diamagnetism and is only observable if no permanent moments are

present. We can distinguish between the diamagnetism of insulators which

is called Larmor diamagnetism and diamagnetism of itinerant electrons in

metals which is called Landau diamagnetism.

3.2 Larmor diamagnetism

As diamagnetism is only observable in a system without other kinds of

magnetism, we consider a solid made up out of ions with completely filled

shells. For the ground state, we have
⇀

J|0〉 =
⇀

L|0〉 =
⇀

S|0〉 = 0 (3.9)

We switch on an external magnetic field given by
⇀

B0 = µ0

⇀

H = (0, 0,B0)

and look for the response of the system, i.e. the field induced magnetic

moment, the magnetization. We consider an insulator where all electrons

are strictly localized. Then

⇀

M(B0) =
N

V
〈0| ⇀m|0〉 (3.10)
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for N ions in volume V . We already know that magnetic energies ≈ µBB0

are usually so small that the system remains in the ground state |0〉 in

the average. We now need the Hamiltonian in a homogeneous magnetic

field from which we obtain the magnetization as
⇀
m = −

∂H

∂
⇀

B0

. We consider

only the electrons and ignore the interactions between them and with the

nucleus for the time being. We choose the vector potential in the Coulomb

gauge so that
⇀

B0 = ∇×
⇀

A with ∇ ·
⇀

A = 0 . (3.11)

This can be achieved by
⇀

A =
1

2

⇀

B0 ×⇀
r .

The kinetic energy without field is

T0 =

n∑

i=1

p2
i

2

for n electrons with charge −e so that e > 0. In the field, the canonical

momentum
⇀
pi is different from the mechanical momentum m

⇀
vi:

⇀
pi = m

⇀
vi − e

⇀

A(
⇀
ri) . (3.12)

Then we have for the kinetic energy

T =
1

2m

n∑

i=1

(
⇀
pi+e

⇀

A(
⇀
ri)
)2

=
1

2m

n∑

i=1

[
⇀
p2
i+e

(
⇀
pi·

⇀

A(
⇀
ri)+

⇀

A(
⇀
ri)·⇀pi

)
+e2

⇀

A2(
⇀
ri)
]

(3.13)

In general, operators
⇀
pi and

⇀

A(
⇀
ri) do not commute, but in Coulomb gauge

they do:
⇀
pi ·

⇀

A(
⇀
ri) =

 h

i

(
∇i ·

⇀

A︸ ︷︷ ︸
=0

+
⇀

A · ∇i
)
=

⇀

A(
⇀
ri) · ⇀pi .

Therefore, the kinetic energy becomes

T = T0 +
e

m

n∑

i=1

⇀

A(
⇀
ri) · ⇀pi +

e2

2m

n∑

i=1

⇀

A2(
⇀
ri) (3.14)

With the field
⇀

B0 in z direction
⇀

B0 = (0, 0,B0), the vector potential is

⇀

A =
1

2

⇀

B0 ×⇀
r =

B0

2
(−y, x, 0) . (3.15)
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The scalar product
⇀

A(
⇀
ri) · ⇀

pi can be expressed by the orbital angular

momentum
⇀

li of electron i:

⇀

A(
⇀
ri) · ⇀pi =

B0

2
(−yipix + xipiy) =

1

2
B0liz =

1

2

⇀

B0 ·
⇀

li .

Then using the total orbital angular momentum
⇀

L =
∑n
i=1

⇀

li, we have

T = T0 +
µB

 h

⇀

L ·
⇀

B0 +
e2B2

0

8m

n∑

i=1

(
x2
i + y

2
i

)
. (3.16)

In this derivation we have neglected the spin
⇀

S of the electrons; we already

know that the field couples not only to
⇀

L but actually to
⇀

J =
⇀

L+2
⇀

S. Thus,

two terms in the Hamiltonian contain the magnetic field,

HZ = −
µB
 h
(Lz + 2Sz)B0 and Hdia =

e2B2
0

8m

n∑

i=1

(
x2
i + y

2
i

)
(3.17)

Performing the average for the first term (considering completely filled

shells, Equation 3.9) gives

〈
0

∣∣∣∣
∂HZ

∂
⇀

B0

∣∣∣∣0
〉

= 0 .

We are left with

⇀

M(B0) = −
N

V

〈
0

∣∣∣∣
∂Hdia

∂
⇀

B0

∣∣∣∣0
〉

(3.18)

Due to the spherical symmetry of the ion (noble gas configuration), we

have

n∑

i=1

〈0|x2
i |0〉 =

n∑

i=1

〈0|y2
i |0〉 =

n∑

i=1

〈0|z2
i |0〉 =

1

3

n∑

i=1

〈0|⇀r2i |0〉 .

As x and y components of the magnetization vanish, we find for the z
component

M(B0) = −
Ne2

6mV
B0

n∑

i=1

〈⇀r2i 〉 . (3.19)
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The diamagnetic susceptibility is obtained by differentiating again with

respect to B0:

χdia = µ0

(
∂M

∂
⇀

B0

)

T

= −
Ne2

6mV

n∑

i=1

〈0|⇀r2i |0〉 , (3.20)

where the negative sign indicates diamagnetism. The external field induces

a moment whose field is directed opposite to the applied field.

To estimate the order of magnitude of χdia, we first note that in the liter-

ature, usually the molar susceptibility is given:

χdia
m =

NAV

N
χdia

[
cm3

mol

]
(3.21)

with Avogadro number NA = 6.022 · 1023 mol−1. The average ion radius

〈r2〉 = 1

n

n∑

i=1

〈0|r2i |0〉

can be expressed in units of the Bohr radius

aB =
4πε0 h

2

me2
= 0.529 Å .

Then the molar susceptibility is

χdia
m = −0.995 · 10−5n

〈
r2

a2
B

〉 [
cm3

mol

]
, (3.22)

where
〈
r2

a2B

〉
is of the order of 1. Thus, χdia

m is very small and diamagnetism

is only observable when it is not shadowed by paramagnetism or collective

magnetism.

Table 3.1: Examples of diamagnetic molar susceptibilities χdia
m in

10−6cm3/mol.

He -1.9 Li+ -0.7

F− -9.4 Ne -7.2 Na+ -6.1

Cl− -24.2 Ar -19.4 K+ -14.6

Br− -34.5 Kr -28.0 Rb+ -22.0

I− -50.6 Xe -43.0 Cs+ -35.1
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Examples are noble gases and simple ionic crystals like alkali metal halides

for which contributions of cations and anions add up.

In Table3.1, the electron number increases within each column, and so

does |χdia
m | (see Eq. 3.22). In each row, electron number is the same but the

nuclear charge Z increases, increasing the attractive force on the electron

shells and thus shrinking the size of the ion 〈r2〉 from left to right; thus,

|χdia
m | decreases.

3.3 Landau diamagnetism

There is also a diamagnetic contribution to the susceptibility due to (nearly)

free electrons in metals; free electrons in an electron gas lead to charge cur-

rents in a magnetic field which generate magnetic moments. This would

still be true if the electrons had no spin (no spin magnetic moment). This

diamagnetic response, due to the Bohr-van Leeuwen theorem, has to be a

quantum-mechanical phenomenon.

3.3.1 Two-dimensional electron gas

As a first step, we consider a two-dimensional electron gas in a uniform

magnetic field based on the single-electron Hamiltonian

H =
1

2m

[
⇀
p+ e

⇀

A(
⇀
r)
]2

(3.23)

with charge −e. The Zeeman term which would lead to paramagnetism is

neglected here. Without loss of generality, we assume the uniform field to

point in z direction,
⇀

B0 = (0, 0,B0). We choose the so-called Landau gauge
⇀

A(
⇀
r) = (−B0y, 0, 0)

which gives

⇀

B0 = ∇×
⇀

A =




∂y0 − ∂z0
−∂zB0y− ∂x0
∂x0 + ∂yB0y


 =




0

0

B0


 . (3.24)

Thus

H =
1

2m
(px − eB0y)

2 +
1

2m
p2
y (3.25)

we have [H,px] = 0 as H doesn’t contain x; px is a constant of motion,

and we can replace it by its eigenvalue  hkx. If we define y0 :=
 h
eB0
kx and
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ωc :=
eB0
m

with cyclotron frequency ωc, we obtain

H =
1

2m
p2
y +

m

2
ω2

c(y− y0)
2 . (3.26)

This Hamiltonian describes a harmonic oscillator with potential minimum

shifted to y0. It has the eigenvalues

En,kx =  hωc

(
n+

1

2

)
, n = 0, 1, 2, . . . (3.27)

This is a huge degeneracy because the energies do not depend on kx. The

apparent asymmetry between x and y direction in H is gauge dependent

and therefore without physical consequence. We could have chosen the

vector potential to point in any direction within the xy plane. The isotropy

of the two-dimensional space is not broken by the choices of a special gauge.

The magnetic field transforms the spectrum of the two-dimensional electron

gas

E⇀
k
=

 h2

2m

(
k2
x + k

2
y

)

into a discrete spectrum of Landau levels enumerated by n. For B0 = 0,

the density of states is

D(ε) =

∫
d2k

(2π)2
δ

(
ε−

 h2k2

2m

)
=

1

2π

∫∞

0
dkkδ

(
ε−

 h2k2

2m

)

=︸︷︷︸
u=k2,du=2kdk

1

4π

∫∞

0
duδ

(
ε−

 h2u

2m

)
=

1

4π

∫∞

0
dE

2m
 h2
δ(ε− E)

=
m

2π h2
for ε > 0

(3.28)

Thus, the density of states is constant. For B0 > 0, it is replaced by δ
function peaks (Figure 3.1).

We can now determine the degeneracy of the Landau levels. Since the total

number of states does not change, the Landau levels must accommodate

these states; thus, the degeneracy of the first one, and all others, is (for an

electron gas enclosed in a sample with area L2)

NL = L2

∫  hωc

0
dεD(ε) =

m

2π h2
 hωcL

2 =
m

2π h

eB0

m
L2 =

eB0

h
L2 (3.29)
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Figure 3.1: Den-

sity of states of

two-dimensional

electron gas at fi-

nite magnetic field

B0 > 0.

At low temperature, the low energy states are filled successively until all

N electrons are accommodated. If

N = 2nNL with n = 1, 2, . . .

the n lowest Landau levels are completely filled and the others are empty.

The factor 2 is due to the two spin directions. In case that N
2NL

is not an

integer, the highest Landau level is partially filled. Landau level quantiza-

tion is one of the key ingredients of the integer quantum Hall effect. For

calculating the total energy of N electrons, we define bxc as the largest

integer smaller or equal to x, and n =
⌊
N

2NL

⌋
; then

E =

n−1∑

n=0

2NL hωc

(
n+

1

2

)
+ (N− n2NL) hωc

(
n +

1

2

)
. (3.30)

The first term describes the filled Landau levels, and the second the par-

tially filled one. With the filling factor ν := N
2NL

, the energy per electron

is

E

N
=

n−1∑

n=0

2

ν
 hωc

(
n+

1

2

)
+
(

1 −
2n

ν

)
 hωc

(
n +

1

2

)
. (3.31)

with n =
⌊
ν
2

⌋
. This function is continuous but not everywhere differentiable

(see Figure 3.2). Bt is the field for which ν = 2, i.e. for which the lowest

Landau level is completely filled:

N

NL
=

Nh

eBtL2

!
= 2 y Bt =

hN

2eL2
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Figure 3.2: En-

ergy of the two-

dimensional elec-

tron gas as func-

tion of magnetic

field B0. Bt/3 Bt/2 Bt

E
 (
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n
it
s
)

B0

The areal magnetization

M = −
1

L2

∂E

∂B0

shows oscillations that are periodic in 1
B0

. These are the de Haas-van Alphen

oscillations (see Figure 3.3).

Figure 3.3: Mag-

netization of the

two-dimensional

electron gas as

function of mag-

netic field B0.
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B0

The limit limB0→0M does not exist; neither does the limit limB0→0 χ for

the susceptibility χ = ∂M
∂B0

. This unphysical result is due to the assumption

of zero temperature T = 0. At any T > 0, the thermal energy kBT will be

large compared to the energy spacing  hωc between the Landau levels for

sufficiently small B0. In this regime, the discreteness of the Landau levels
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can be neglected, and the energy becomes

E
N�2NL

∼=

∫ N
2NL

0
dn 2NL hωcn =

2eB0

h
L2

 heB0

m

[
n2

2

] Nh

2eB0L
2

0

=
e2B2

0

πm
L21

2

N2h2

4e2B2
0L

4
=
N2h2

8πm

1

L2
. (3.32)

Thus, the areal magnetization vanishes:

M = −
1

L2

∂E

∂B0
= 0

We could have guessed this result: Smearing out the rapid oscillations at

small B0 would lead to M = 0. Thus, χ = ∂M
∂B0

= 0 in this limit; the

diamagnetic susceptibility of the two-dimensional electron gas vanishes.

3.3.2 The three-dimensional electron gas

The Hamiltonian of free electrons in three dimensions in the presence of a

uniform magnetic field
⇀

B0 = B0
⇀
ez is

H =
1

2m

[
⇀
p+ e

⇀

A(
⇀
r)
]2

=
1

2m
p2
y +

m

2
ω2

c(y− y0)
2 +

1

2m
p2
z , (3.33)

using again the Landau gauge A = (−B0y, 0, 0). Now we obtain free mo-

tion in z direction in addition to shifted harmonic oscillators in the xy
plane. The eigenenergies are

E
n,

⇀
k
=  hωc

(
n+

1

2

)
+

 h2k2
z

2m
, n = 0, 1, 2, . . . (3.34)

The density of states is thus a sum of the densities of states of the one-

dimensional electron gas, shifted to the minimum energies  hωc

(
n + 1

2

)
,

n = 0, 1, 2, . . . . The resulting density of states is for one spin direction

D(ε) =
NL

L2

∞∑

n=0

1

π h

√√√√
m

2
(
ε−  hωc

(
n+ 1

2

))Θ
(
ε−  hωc

(
n+

1

2

))

=
1

π h

√
m

2

NL

L2

∞∑

n=0

Θ

(
ε−  hωc

(
n+ 1

2

))

√
ε−  hωc

(
n+ 1

2

) (3.35)
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