
2. Magnetism of free atoms and ions

The study of magnetism starts with small systems – atoms, ions and

molecules – where many of the mechanisms that give rise to magnetic

ordering are already active as soon as there are two interacting electrons.

The tendency to form a high spin ground state in a small system is related

to a ferromagnetic state in a solid, the tendency to align antiparallel and

form a spin singlet is related to antiferromagnetism. On the other hand,

when electrons are essentially localized to ions, the properties of the iso-

lated ions are directly relevant also for the solid, as is the case for rare

earth ions.

2.1 Hartree approximation for the electron shell

We cannot exactly solve the many-body problem of a nucleus with many

electrons. In the simplest non-trivial approximation, the Hartree approx-

imation, a given electron moves in a potential resulting from the nucleus

and the average density of the other electrons; it is important that the self-

interaction, the interaction of the electron with its own averaged charge

density is excluded. The total potential is

Veff(
⇀
r) = −

1

4πε0

Ze2

r
−

1

4πε0

∫
d3r ′

eρ⇀r(
⇀
r ′)

|
⇀
r−

⇀
r ′|

(2.1)

where Z is the atomic number of the nucleus, the electron charge is −e < 0,

and ρ⇀r(
⇀
r ′) < 0 is the charge density at

⇀
r ′ of the other electrons if the given

electron is at
⇀
r. Veff(

⇀
r) is spherically symmetric due to the isotropy of

space, but ρ⇀r(
⇀
r ′) as a function of

⇀
r ′ is not spherically symmetric except

for
⇀
r = 0. For the electron at

⇀
r we solve the single-particle Schrödinger

equation

( p2

2m
+ Veff(

⇀
r)
)
ψ(

⇀
r) = Eψ(

⇀
r) (2.2)
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From a separation of variables and using the spherical symmetry, the eigen-

functions are

ψnlm(
⇀
r) = Rnl(r)Ylm(ϑ,φ) (2.3)

with principal quantum number n = 1, 2, 3, . . . , orbital angular momentum

quantum number l = 0, 1, 2, . . . ,n−1 and magnetic quantum numberm =
−l,−l+1, ..., l. The angular part is the same for any spherically symmetric

potential and is given by the spherical harmonics Ylm(ϑ,φ). Eigenenergies

εn,l only depend on n, l in the present approximation. Including a factor

of 2 from spin s = 1/2, the εn,l are 2(2l+ 1)-fold degenerate. Completely

full shells comprising all orbitals with a given quantum number n, l have

〈∑i

⇀

li〉 = 0 and 〈∑i
⇀
si〉 = 0, i.e. vanishing total angular moment because

for every electron there is another one with opposite 〈
⇀

li〉, 〈⇀si〉. The total

magnetic moment of filled shells also vanishes. Therefore, magnetic ions

require incompletely filled shells.

In the ground states, we need to fill the Hartree orbitals starting from the

lowest in energy. For a shell containing p electrons (with p < 2(2l + 1)),
the number of possibilities of doing this is given by

(
2(2l+ 1)

p

)
.

This represents the degeneracy of the many-particle state. For a filled state,

we get no degeneracy: (
2(2l+ 1)
2(2l+ 1)

)
= 1 .

2.2 Beyond the Hartree approximation

The large degeneracy we found is partially lifted by the Coulomb repulsion

beyond the Hartree approximation. The Coulomb interaction

VC =
1

4πε0

1

2

∑

i 6=j

e2

|
⇀
ri −

⇀
rj|

(2.4)

commutes with the total orbital angular momentum of the shell
⇀

L =
∑
i

⇀

li
as VC is spherically symmetric, and with the total spin of the shell

⇀

S =∑
i
⇀
si as well because the Hamiltonian doesn’t depend on it:

[
⇀

S,H]− = 0 , [
⇀

L,H]− = 0 (2.5)
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The Hamiltonian also commutes with
⇀

L2 and with
⇀

S2. Furthermore, the

total angular momentum of the shell
⇀

J =
⇀

L+
⇀

S (2.6)

commutes with the Hamiltonian

[
⇀

J,H]− = 0 . (2.7)

Physically, this means that

L =

p∑

i=1

m
(i)
l , S =

p∑

i=1

m(i)
s , J (2.8)

are good quantum numbers;m
(i)
l andm

(i)
s are the magnetic quantum num-

bers of the electrons. We can also say that there exists a simultaneous set

of eigenstates for the operators

H, J2, Jz,L
2,Lz,S

2,Sz ,

and states can be labeled by the corresponding quantum numbers

| . . . 〉 = |J,MJ,L,ML,S,MS〉 (2.9)

Here, S is the maximum possible value of 〈Sz〉, L is the maximum possible

value of 〈Lz〉. For example,

J2| . . . 〉 =  h2J(J+ 1)| . . . 〉 Jz| . . . 〉 =  hMJ| . . . 〉
J = |L− S|, . . . ,L+ S − J 6MJ 6 +J (2.10)

The other angular momentum operators act in similar fashion. The energy

eigenvalues of the Hamiltonian

H| . . . 〉 = E(0)JLS| . . . 〉 (2.11)

will depend on J, L, S, but in the absence of a magnetic field, they will be

degenerate with respect to MJ, ML and MS.

If we apply the raising operator L+ = Lx + iLy to |ψ〉 and obtain a |ψ ′〉
with M ′

L = ML + 1, we reach a new state that has the same energy as

the old one because [H,L+] = 0. There are (2L + 1)(2S + 1) states that

are connected by L± and by S± (S− = Sx − iSy, S
+ = Sx + iSy); the(

2(2l+ 1)
p

)
-fold degenerate states split into multiplets with fixed S and

L and degeneracies (2L + 1)(2S + 1). Typically, energy splitting between

multiplets are much larger than 1 eV so that for magnetic problems, we

only need to know the ground state multiplet.

12



2.2.1 Hund’s rules for LS coupling

We assume here that the Coulomb interaction HC is significantly larger

than the spin-orbit coupling HSO

HC � HSO

which leads us to the Russell-Saunders- or LS-coupling. This is relevant for

light nuclei.

The empirical Hund’s rules tell us how to build the ground-state LS mul-

tiplet for given L and S, and for p electrons filled into a shell with orbital

angular momentum quantum number l:

1st Hund’s rule: The ground state multiplet has the largest possible S.

(The maximum S corresponds to the largest possible value of 〈Sz〉).

S =
1

2

[
(2l+ 1) − |2l+ 1 − p|

]

2nd Hund’s rule: If the 1st Hund’s rule leaves several possibilities, the

state with maximum L is lowest in energy:

L = S|2l+ 1 − p|

(The maximum L corresponds to the largest possible value of 〈Lz〉).

A short qualitative explanation for the 1st Hund’s rule is that the same spin

together with the Pauli principle means that the electrons are on average

further apart, reducing the Coulomb repulsion. Also the aligned orbital

momenta, i.e. rotation in the same sense, of the second rule optimizes

distance between electrons and reduces Coulomb energy.

The multiplets are labeled as 2S+1L where a letter is used for L:

L = 0 1 2 3 4 5 6 . . .

X = S P D F G H I continuing alphabetically

We can count the number of distinct states within the LS multiplets as

L+S∑

J=|L−S|

(2J+ 1) = (2S+ 1)(2L+ 1) (2.12)

Often (not always), these states are ordered according to the
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Table 2.1: Atomic term scheme for an f shell occupied by p electrons. ↑
represents spin projection 1/2, ↓ represents spin projection −1/2.

p ml

3 2 1 0 -1 -2 -3 S L J term

1 ↑ 1/2 3 5/2 2F5/2

2 ↑ ↑ 1 5 4 3H4

3 ↑ ↑ ↑ 3/2 6 9/2 4I9/2
4 ↑ ↑ ↑ ↑ 2 6 4 5I4

5 ↑ ↑ ↑ ↑ ↑ 5/2 5 5/2 6H5/2

6 ↑ ↑ ↑ ↑ ↑ ↑ 3 3 0 7F0

7 ↑ ↑ ↑ ↑ ↑ ↑ ↑ 7/2 0 7/2 8S7/2

8 ↑↓ ↑ ↑ ↑ ↑ ↑ ↑ 3 3 6 7F6

9 ↑↓ ↑↓ ↑ ↑ ↑ ↑ ↑ 5/2 5 15/2 6H15/2

10 ↑↓ ↑↓ ↑↓ ↑ ↑ ↑ ↑ 2 6 8 5I8

11 ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑ ↑ 3/2 6 15/2 4I15/2
12 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ ↑ 1 5 6 3H6

13 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑ 1/2 3 7/2 2F7/2

14 ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ 0 0 0 1S0

3rd Hund’s rule: For the total angular momentum of the shell,
⇀

J = |
⇀

L−
⇀

S| in case the shell is less than half filled (p 6 (2l+ 1)),
⇀

J =
⇀

L+
⇀

S in case the shell is more than half filled (p > (2l+ 1)),

which means

J = S|2l− p| .

Table 2.1 gives the terms for an f shell (e.g. 4f, relevant for rare earths),

occupied by p electrons.

2.3 Spin-orbit coupling

Experimentally, the magnetic moment of an electron is

⇀
ms = −gµB

⇀
s
 h

with g ≈ 2.0023. This cannot be explained with a classical calculation.

A classical estimate of g based on the assumption that an electron is a

spinning charged sphere with angular momentum
⇀
s would only lead to
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g = 1. However, relativistic Dirac quantum theory gives g = 2, and the

remaining≈ 0.0023 are due to small corrections arising from the interaction

of the electronic charge with the electromagnetic field it generates; this can

be calculated precisely with quantum electrodynamics.

We will see now that also for the many-particle states of ions, a relativistic

description is necessary. The starting point for the derivation is the non-

relativistic v � c limit of the Dirac equation which gives rise to the two-

component Pauli theory. However, we have to go further in perturbation

theory, including terms of the order v2

c2
. This higher order approximation

is done formally correctly using the Foldy-Wouthuysen transformation. A

static electric potential φ of the nucleus is considered. One obtains the

following Hamiltonian in spinor space:

H =
p2

2m
+ φ(

⇀
r) −

p4

8m3
ec

2
+

 h2

2m2
ec

2

1

r

∂φ

∂r

⇀
s ·

⇀

l+
 h2

8m2
ec

2
∇2φ (2.13)

Here, the first two terms are the non-relativistic H0, the third term is a

relativistic correction to the kinetic energy, the fourth term contains the

spin-orbit coupling HSO, and the last term is a correction to the potential,

known as the Darwin term.

We will now consider the spin-orbit coupling term for the central potential

of the nucleus

HSO = −
 h2

2m2
ec

2

Ze2

4πε0

1

r

∂

∂r

1

r

⇀
s ·

⇀

l =
 h2

2m2
ec

2

Ze2

4πε0

⇀
s ·

⇀

l

r3
=
µ0

4π
gµ2

BZ

⇀
s ·

⇀

l

r3
,

where we assume g = 2 and use µB = e h
2me

and c = 1
µ0ε0

.

The operator of spin-orbit coupling for several electrons in an incompletely

filled shell is then

HSO =
µ0

4π
gµ2

BZ
∑

i

⇀
si ·

⇀

li

r3i
. (2.14)

In principle, not only the bare nuclear potential but the full effective poten-

tial of the Hartree approximation should be taken into account; however,

this is done in practice by replacing the atomic number Z by an effective

Zeff < Z. Next, we treat HSO as a weak perturbation to H0 and evaluate

the contribution of the spin-orbit coupling to the energy:

ESO :=
〈
HSO

〉
=
µ0

4π
gµ2

BZ
∑

i

〈⇀
si ·

⇀

li

r3i

〉
. (2.15)
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For free ions, the radial wave function Rnl for all orbitals of the nl shell is

the same; therefore

ESO =
µ0

4π
gµ2

BZ
∑

i

〈
1

r3

〉

nl

〈
⇀
si ·

⇀

li
〉

. (2.16)

Now we call electrons with spin parallel to
⇀

S spin up (↑) and the others

spin down (↓). Also, the
⇀
si and

⇀

li commute. Thus

ESO =
µ0

4π
gµ2

BZ
∑

i

〈
1

r3

〉

nl

( ∑

i
spin up

〈⇀

S ·
⇀

li

2S

〉
−
∑

i
spin up

〈⇀

S ·
⇀

li

2S

〉)
.

We distinguish three cases:

(i) If the shell is less than half filled (nnl < 2l+ 1), all spins are aligned

and the spin down sum doesn’t contain any terms:

ESO =
µ0

4π
gµ2

BZ

〈
1

r3

〉

nl

1

2S

〈⇀
S·
∑

i

⇀

li
〉
=
µ0

4π
gµ2

BZ

〈
1

r3

〉

nl

1

2S

〈⇀
S·

⇀

L
〉
=: λ

〈⇀
S·

⇀

L
〉

(2.17)

with

λ =
µ0

4π
gµ2

BZ

〈
1

r3

〉

nl

1

2S
.

(ii) If the shell is more than half filled (nnl > 2l + 1), the spin up sum

vanishes because it contains

l∑

ml=−l

〈lml|
⇀

l|lml〉 = 0

and we obtain

ESO = −
µ0

4π
gµ2

BZ

〈
1

r3

〉

nl

1

2S

〈⇀
S ·

⇀

L
〉
=: λ

〈⇀
S ·

⇀

L
〉

(2.18)

with

λ = −
µ0

4π
gµ2

BZ

〈
1

r3

〉

nl

1

2S
.

(iii) If the shell is half filled (nnl = 2l + 1), both spin up and spin down

sums vanish and we get ESO = 0. Note that at higher orders in

perturbation theory, there is a nonzero contribution.
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In summary, the spin-orbit coupling in a free ion behaves, within pertur-

bation theory, like a term HSO = λ
〈⇀
S ·

⇀

L
〉

in the Hamiltonian, with λ > 0

for less than half filled shells and λ < 0 for more than half filled shells.

As a consequence of spin-orbit coupling HSO, even in the absence of an

external magnetic field (
⇀

B0 = 0)
⇀

l and
⇀
s do not commute with the Hamil-

tonian.

One can show that
[⇀
l · ⇀s,

⇀

l
]
−
= i h

(⇀
l× ⇀

s
)
= −

[⇀
l · ⇀s, ⇀

s
]
−

.

On the other hand,
[⇀
l · ⇀s,

⇀

j
]
−
= 0 with

⇀

j =
⇀

l+
⇀
s .

Furthermore,
[⇀
l · ⇀s,

⇀

j2
]
−
=
[⇀
l · ⇀s,

⇀

l2
]
−
=
[⇀
l · ⇀s, ⇀

s2
]
−
= 0 .

This means that the energy eigenstates can be classified by j, mj, l and s
(which are good quantum numbers) but not by ml and ms. HSO couples,

i.e. hybridizes the states with different ml and ms.

HSO partially lifts the degeneracy of the LS-multiplet (here the doublet as

our treatment is for one electron, j = l± 1/2). Due to
⇀

j =
⇀

l+
⇀
sy 2

(⇀
l · ⇀s
)
=

⇀

j2 −
⇀

l2 −
⇀
s2

HSO produces a fine structure of the energy terms

E
(0)
nlj = E

(0)
nl + λnl h

2[j(j+ 1) − l(l+ 1) − s(s+ 1)] (2.19)

with energy E
(0)
nlj in the absence of spin-orbit coupling. The constant λnl is

λnl = −
e

2m2
ec

2

〈
nls
∣∣∣1
r

dφ

dr

∣∣∣nls
〉

.

Thus, terms with j = l ± 1/2 have different energies for l 6= 0 while the

2j+ 1-fold degeneracy due to mj remains.

2.4 Magnetic moments of ions

A problem arises when we want to calculate the magnetic moment of an

ion with quantum number S, L, J: Using g = 2 for the g factor of the

electron, the magnetic moment is
⇀
mJ =

⇀
mS +

⇀
mL = −2µB

⇀

S− µB

⇀

L = −µB

(
(2

⇀

S+
⇀

L
)
= −µB

(⇀
J+

⇀

S
)
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But
⇀
mJ does not commute with the Hamiltonian because of the spin-orbit

coupling term λ
⇀

L ·
⇀

S (
⇀

J does commute but
⇀

S does not). Therefore,
⇀

J is a

constant of motion but
⇀
mJ is not; we can think of

⇀

S and
⇀

L and thus
⇀
mJ as

rotating around the fixed vector
⇀

J (see Figure 2.1).

Figure 2.1: Nei-

ther
⇀

L,
⇀

S nor
⇀
mJ

are constants of

motion, only
⇀

J.

S

S

L
J

J+S

Jm

The typical time scale of this rotation should be h
|λ|

. For “slow” experi-

ments like magnetization measurements, only a time averaged
⇀
mobs will

be observable. We can determine it by projecting
⇀
mJ on the direction of

the constant
⇀

J:

⇀
mobs =

(
⇀
mJ ·

⇀

J
)⇀
J

⇀

J ·
⇀

J
= −µB

[(⇀
J+

⇀

S
)
·
⇀

J
]⇀
J

⇀

J ·
⇀

J
= −µB

⇀

J− µB

(⇀
S ·

⇀

J
)⇀
J

⇀

J ·
⇀

J

= −µB

⇀

J+
µB

2

(⇀
J−

⇀

S
)2

−
⇀

J ·
⇀

J−
⇀

S ·
⇀

S
⇀

J ·
⇀

J

⇀

J and with
⇀

J−
⇀

S =
⇀

L

⇀
mobs = −µB

⇀

J−
µB

2

J(J+ 1) + S(S+ 1) − L(L+ 1)

J(J+ 1)

⇀

J =: −gJµB

⇀

J (2.20)

after introducing the Landé g factor

gJ = 1 +
J(J+ 1) + S(S+ 1) − L(L+ 1)

2J(J+ 1)
(2.21)

gJ satisfies 0 6 gJ 6 2 and can be smaller than the orbital value gL = 1.
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