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1. Introduction

1.1 Magnetism as an effect of the electron-electron interaction

Since antiquity it was known that there is an attraction between lodestone

(magnetite, Fe3O4) and iron. Plato and Aristotle mention permanent mag-

nets. They are also mentioned in Chinese texts of the 4th century BC. Use

of a magnetic compass for navigation was first mentioned in a Chinese text

dated 1040-1044 AD but a much earlier use is possible. Apparently the

magnetic compass was first used for orientation on land, not on the sea.

Thus, magnetism at first referred to the long-range interaction between

ferromagnetic macroscopic entities. However, in this course we will focus

on the microscopic origin of the magnetic order in solids; one of these orders

is ferromagnetism.

Initially, we want to describe the effect of an external magnetic field H on

the behavior of a solid. For a weak field, the relevant response function is

the susceptibility

χ =
M

H

with the magnetization density H. The probing field can be space and time

dependent. Consequently, if we introduce Fourier components of H and

M, we find in general a wave vector and frequency dependent generalized

susceptibility χ(
⇀
q,ω) which fully characterizes the behavior of the systems

in weak fields. Calculating the magnetization requires solving a quantum

mechanical eigenvalue problem where the interaction of the external field

with the system is added to the microscopic Hamiltonian. The energy scale

of this interaction is µBH with the Bohr magneton

µB =

{
e h

2mc ≈ 9.27 · 10−21 erg
G in cgs units

e h
2m ≈ 9.27 · 10−24 J

T in SI units ,
(1.1)

and with Gauss (G) and Tesla (T). µB is nearly equal to the spin moment

of an electron in vacuum.
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Now how large is this energy scale µBH? In condensed matter physics,

a common energy unit is electron Volt 1 eV = 1.6 · 10−19 J, and equiva-

lent temperatures are obtained using the Boltzmann constant kB = 1.38 ·
10−23 J

K = 8.6 · 10−5 eV
K . This means that 1 eV corresponds to the temper-

ature 11605 K. A standard laboratory field of 5 T = 5 · 104 G then corre-

sponds to an interaction energy of µBH = 3 K. Comparing to other solid

state energy scales, this is rather small: band widths can be of the order

1 − 10 eV ∼ 104 − 105 K; Coulomb matrix elements are of similar size, and

phonons are characterized by Debye temperatures of ΘD = 100 − 1000 K.

Even spin orbit coupling is usually stronger than µBH. µBH is of the order

of the superconducting Tc of conventional superconductors; it is well known

that sufficiently strong magnetic fields can suppress superconductivity.

It would however be wrong to assume that because of the small energy

scales, no drastic change in the behavior of solids is to be expected. One

possibility is a situation of degeneracies in a system with competing energy

scales where a magnetic field can trigger strong effects. Also, if strong

correlations lead to very narrow effective bands and therefore very small

Fermi energies, as in heavy Fermion materials, laboratory fields can have

dramatic effects.

Conventionally, weak magnetism denotes the situation when the magneti-

zation of a material is induced by an external field and vanishes when the

field is turned off. Strong magnetism means that a material shows a spon-

taneous magnetization also in the absence of an external field. Formally, a

divergent static susceptibility χ(
⇀
q,ω = 0) indicates the onset of magnetic

ordering.

While field induced magnetization can be attributed to a weak perturba-

tion, this is not anymore true for the origin of spontaneous magnetic or-

der. Realizable magnetic fields are rather weak, and dipole fields of atomic

moments at interatomic distances are even weaker. Let’s consider if the

magnetism of iron could be due to classical moments that align by sitting

in each others fields. In ferromagnetic iron, the moments are µat = 2.1µB,

and nearest neighbor distances are a = 2.55 Å ≈ 5aB (with Bohr radius

aB =
 h2

me2
). The fine structure constant is α = e2

 hc ≈ 1
137 , and a Rydberg

is 1 Ry = e4m
2 h2 ≈ 13.6 eV. Then the dipole-dipole interaction can be esti-

mated as
µ2at
a3

=
(
µat
µB

)2( a
aB

)−3α2

2 Ry ≈ 10−5 eV ≈ 0.1 K. This clearly cannot

account for a Curie temperature of 1043 K.

Spontaneous magnetic order is, in most cases, a consequence of strong
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electron-electron interactions, rather than a secondary effect due to a weak

perturbation. The magnetism of strongly magnetic materials arises from

large terms in the Hamiltonian. Whenever band theory indicates a metal

with narrow conduction bands, magnetism arises in a natural manner (i.e.

it is one of the leading instabilities). Then the material often turns out to be

a magnetic insulator rather than a metal. Magnetic instabilities are closely

related to the problem of metal insulator transitions. Not all materials loose

their metallicity upon becoming magnetic, though: Other circumstances

like band filling play a role. There are the famous ferromagnetic metals

Fe, Co, Ni, magnetic rare earth metals Gd and Dy or the ferromagnetic

metallic oxide CrO2.

Magnetism will be discussed here in the context of electron-electron inter-

actions. Once these are strong, systems can become magnetic, they can

distort structurally, they can show metal insulator transitions, and they

might even become unconventional superconductors. The focus will here

be on the microscopic mechanisms of magnetism.

1.2 Magnetic field sources

The phenomena that can be observed experimentally are determined by

the available magnetic fields, and new field induced effects are discovered

with each progress in available magnetic field strengths. The cgs unit of

magnetic field H is Oersted, and conversion to SI is by 10Oe = 103

4π
A
m

. The

unit of the field B = H + 4πM is the same by value and dimension but

it is called Gauss. The SI unit is 1 Tesla = 104 G. The field of the earth is

about 0.5 G. Simple iron based permanent magnets provide a few hundred

Gauss, and powerful permanent magnets like samarium-cobalt (SmCo5) or

neodymium-iron-boron (Nd2Fe14B) have fields of 3000-4000 G. Large fields

for research are produced by electromagnets; fields of 5-30 T are routine.

There are limits to the fields that can be produced by currents through

coils because the force exerted by the field on the coil eventually exceeds

the tensile strength of the material. Resistive heating through the current

is another limiting factor. This can be avoided by the use of supercon-

ducting coils; however, superconductivity breaks down when the magnetic

field exceeds the critical field of the superconductor. Hybrid magnets with

resistive electromagnets inside a superconducting magnet can reach higher

fields, ∼ 45 T. For many experiments, it is sufficient to have an intense field

for milliseconds or microseconds; fields up to 100 T can be produced with
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non-destructive pulsed magnets. Self-destructing pulsed magnets can pro-

duce an order of magnitude larger fields, for example very recently 1200 T

at ISSP, University of Tokyo, and constitute a very active field of research.

1.3 Some concepts at the example of magnetite

Even though magnetite was known to most ancient civilizations, it is a

complicated substance and a topic of research even today. By way of an

introduction we will learn about some of the questions that can be asked,

but not about all the answers

1.3.1 Charge states

Magnetite is an iron oxide with the formula Fe3O4; besides it, there are also

the iron oxides FeO and Fe2O3 (hematite). We can use them to analyze

the ionic bonding: We have divalent iron in Fe2+O2– and trivalent iron in

Fe3+
2 O2–

3 . Now in magnetite, both divalent and trivalent iron are present:

Fe2+Fe3+
2 O2–

4 . It is called a mixed valent oxide. We can try to imagine what

these charge states of iron would mean in terms of a band picture. Fe2+

and Fe3+ both have partially filled d shells, 3d5 for Fe3+ and 3d6 for Fe2+.

Now we can try to think of the resulting band as a tight binding band with

nearest neighbor hopping. For a pair of 3d5 and 3d6 sites, we can think of

this hopping event between sites i and j:
∣∣3d5

〉
i

∣∣3d6
〉
j
→
∣∣3d4

〉
i

∣∣3d7
〉
j

(1.2)

This can be realized by a minority spin electron jumping away from a 3d5

site:
3d63d5 3d4 3d7

Fe 3+ Fe 2+ Fe 4+ Fe 1+

If such a hopping process would be realized, we would also expect mono-

valent Fe+ and tetravalent Fe4+ ions to appear. However, this is contrary

to our chemical picture that magnetite contains only divalent and trivalent

iron; at least, independent electron theory seems to give us a too high frac-

tion of other valences. Mixed valence is rather common in transition metals

and rare earths and means that a substance is dominated by two valence

5



states at the exclusion of others. Thus, in magnetite we should somehow

restrict hopping to processes that interchange Fe2+ and Fe3+:

∣∣3d5
〉
i

∣∣3d6
〉
j
→
∣∣3d6

〉
i

∣∣3d5
〉
j

(1.3)

Restricting hopping in this way is an example of correlated motion rather

than the usual band motion of electrons.

1.3.2 Spin states

Even equation 1.3 is still too permissive because we have not yet taken into

account the spin state. Fe2+ and Fe3+ are magnetic ions and will retain the

total spin (the magnetic moment) that they would have in free space. First

of all, we need to understand why free Fe2+ ions have total spin S = 2,

and Fe3+ ions have total spin S = 5
2 . Then we need to study if and how

this survives in the solid state.

So let us consider the hopping process

Fe 3+ Fe 2+ Fe 2+ Fe 3+

= 5/2S = 3/2S= 2S = 2S

This is consistent with equation 1.3 but we would consider it forbidden

because it would lead to a low spin state of Fe3+, S = 3
2 . Physically, the

reason to exclude such processes is the same as in the case of the valence

restriction above: It would lead from a low energy subspace to a high energy

subspace. Later, both the reason for the energetic separation of subspaces

and the way to introduce such constraints formally will be discussed.

For the special case of magnetite, it is possible to give a simple form both to

the valence constraint and to the restriction to high spin states. Magnetite

is ferrimagnetic, with an ordering temperature TN = 858 K. If we consider

temperatures of T < 200 K, we can approximate the electron motion as

hopping on the background of a frozen pattern of spin order. Magnetite has

an inverse spinel structure (Figure 1.1), AB2O4 with two crystallographi-

cally inequivalent iron sites. Below TN, spins on the two inequivalent lattice

sites are polarized in the opposite way. The tetrahedrally coordinated A
site has one Fe3+ ion, the octahedrally coordinated B site has one Fe3+

ion, one Fe2+ ion. While the opposite moment Fe3+ ions compensate each
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Figure 1.1: In-

verse spinel struc-

ture AB2O4 of

Fe3O4: Fe3+ ions

occupy the tetrahe-

dral A sites as well

as half of the octa-

hedral B sites; the

other B sites are

occupied by Fe2+

ions.

other, a residual ferrimagnetic moment of Fe2+ on the B site remains. At

sufficiently low temperature when magnetic ordering is nearly perfect, the

only allowed hopping is that of minority spin electrons that switch Fe2+

and Fe3+ sites:

Fe 3+ Fe 2+ Fe 2+ Fe 3+

= 5/2S = 2S = 2S = 5/2S

This means that after fixing the spin order, we can forget about the spin

degree of freedom and focus only on the mobile electrons which are now

“spin free”. The problem is reduced to nearest neighbor hopping of spin-less

Fermions in a half-filled band:

Hhop = −t
∑

〈ij〉

(
c†icj + c

†
jci
)

(1.4)

Here, c†i creates an electron at lattice site i, ci annihilates an electron. t is

an energy and represents the hopping amplitude.

7



1.3.3 Charge order

So far, the problem of 16 d electrons in the chemical unit cell of Fe3O4

has been reduced to a half-filled band of spin-less Fermions moving on the

the B sublattice of the inverse spinel. For a half-filled band, we would now

expect a metallic ground state. However, the resistivity of Fe3O4 shown in

Figure 1.2 clearly doesn’t show a metallic temperature dependence and is

rather high at all temperatures.

Figure 1.2: Resis-

tivity of Fe3O4 as

function of tem-

peraturea. The

temperature of the

Verwey transition

is indicated by an

arrow.

aV. V. Shchennikov,
S. V. Ovsyannikov, J.
Phys.: Condens. Matter 21,
271001 (2009).
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In particular, resistivity jumps up by two orders of magnitude when Fe3O4

is cooled below the so-called Verwey temperature TV ≈ 125 K. Even though

it is a transition from a semiconducting to an insulating state, it can be

considered an example of a correlation-driven metal-insulator transition.

We have accounted for substantial parts of the electron-electron repulsion

by restricting the valence states to Fe2+ and Fe3+ and by assigning defi-

nite, maximum spins to these valence states. However, an important part is

missing. In the spin-less Fermion model, the electrons are prohibited by the

Pauli principle to share the same site but there is so far nothing prevent-

ing them from sitting at nearest neighbor sites. However, the associated

Coulomb energy is large at V = e2

a
with lattice spacing a. We should add

this term to the Hamiltonian:

H = Hhop +He-e = −t
∑

〈ij〉

(
c†icj + c

†
jci
)
+ V
∑

〈ij〉
n̂in̂j (1.5)

with site occupation operator n̂i = c
†
ici. This is of course a very simplified

band model but it contains some essential aspects of the Verwey transition.
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It is an example of how model Hamiltonians are devised. The two terms

of the Hamiltonian stand for competing tendencies. For small V , the first,

kinetic energy term dominates and essentially a half-filled band with little

suppression of simultaneous occupation of neighboring sites is obtained.

On the other hand, setting t = 0 results in

He-e = V
∑

〈ij〉
n̂in̂j . (1.6)

This energy would be minimized by a state in which only every other site

is occupied:

Fe 3+ Fe 2+ Fe 3+ Fe 2+

This could be called a large amplitude charge density wave. It has also

been interpreted as an example of Wigner crystallization, the formation of

an electron crystal. This is a prime example of the meaning of a strongly

correlated state: The electrons do their utmost to avoid each other in direct

space, and it is clear that this is an insulating state. It is also interesting

that this state does not have the full translational invariance of the un-

derlying crystal. An important effect of strong electronic correlations is

the appearance of symmetry breaking ground states, ground states whose

symmetry is lower than that of the Hamiltonian.
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