Okayama University Faculty of Science

Research Institute for Interdisciplinary Science
Prof. Harald Jeschke
Asst. Prof. Nayuta Takemori

Okayama, December 11, 2018

Exercises for Advanced Physics 3, 2018 term 4
 Exercise Set 1
 (Due date: Tuesday, December 18, 2018)

Exercise 1 (Landau diamagnetism) (10 points)

Consider the two-dimensional electron gas in the presence of a perpendicular field $\overrightarrow{\mathrm{B}}_{0}=\mathrm{B}_{0} \vec{e}_{z}$. In the plane, assume that the electron gas is enclosed in a rectangular sample with side lengths L_{x} and L_{y}. According to section 3.3.1 of the script, in the ground state, the N electrons occupy the Landau levels

$$
\begin{align*}
\mathrm{E}_{\mathrm{n}, \mathrm{k}_{\mathrm{x}}} & =\hbar \omega_{\mathrm{c}}\left(\mathrm{n}+\frac{1}{2}\right), \quad \mathrm{n}=0,1,2, \ldots \\
\omega_{\mathrm{c}} & =\frac{e B_{0}}{m} \tag{1}
\end{align*}
$$

The spin splitting is neglected here.
(a) What is the smallest field $\mathrm{B}_{0}=\mathrm{B}_{0}^{(0)}$ at which all the electrons are placed in the $\mathrm{n}=0$ level?
(b) What is the field $\mathrm{B}_{0}=\mathrm{B}_{0}^{\left(\mathrm{n}_{0}\right)} \leqslant \mathrm{B}_{0}^{(0)}$ at which the N electrons are uniformly distributed in the Landau levels up to the quantum number \mathfrak{n}_{0} ?
(c) If the field B_{0} is between the two critical fields $\mathrm{B}_{0}^{\left(\mathfrak{n}_{0}\right)}$ and $\mathrm{B}_{0}^{\left(\mathrm{n}_{0}-1\right)}$

$$
\mathrm{B}_{0}^{\left(\mathrm{n}_{0}-1\right)} \geqslant \mathrm{B}_{0} \geqslant \mathrm{~B}_{0}^{\left(\mathrm{n}_{0}\right)}
$$

calculate the total energy $E\left(B_{0}\right)$ of the N electron system.
(d) What is the result for the special case $E\left(B_{0}^{\left(\mathfrak{n}_{0}\right)}\right)$?

Please explain all steps!

