Okayama University Faculty of Science

Research Institute for Interdisciplinary Science

Prof. Harald Jeschke

Asst. Prof. Nayuta Takemori

Okayama, December 11, 2018

Exercises for Advanced Physics 3, 2018 term 4

Exercise Set 1

(Due date: Tuesday, December 18, 2018)

Exercise 1 (Landau diamagnetism) (10 points)

Consider the two-dimensional electron gas in the presence of a perpendicular field $\vec{B}_0 = B_0 \vec{e}_z$. In the plane, assume that the electron gas is enclosed in a rectangular sample with side lengths L_x and L_y . According to section 3.3.1 of the script, in the ground state, the N electrons occupy the Landau levels

$$\begin{split} E_{n,k_x} &= \hbar \omega_c \Big(n + \frac{1}{2} \Big), \quad n = 0,1,2,\dots \\ \omega_c &= \frac{e B_0}{m} \end{split}$$

The spin splitting is neglected here.

- (a) What is the smallest field $B_0 = B_0^{(0)}$ at which all the electrons are placed in the n = 0 level?
- (b) What is the field $B_0 = B_0^{(n_0)} \leqslant B_0^{(0)}$ at which the N electrons are uniformly distributed in the Landau levels up to the quantum number n_0 ?
- (c) If the field B_0 is between the two critical fields $B_0^{(n_0)}$ and $B_0^{(n_0-1)}$

$$B_0^{(n_0-1)} \geqslant B_0 \geqslant B_0^{(n_0)},$$

calculate the total energy $\mathsf{E}(\mathsf{B}_0)$ of the N electron system.

(d) What is the result for the special case $E(B_0^{(n_0)})$?

Please explain all steps!